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Rigidity of equality cases in symmetrization inequalities

Francesco Maggi

(joint work with F. Cagnetti, M. Colombo, and G. De Philippis)

Symmetrization inequalities, and, in particular, necessary conditions for their
equality cases, are commonly used to prove symmetry properties of minimizers
in geometric variational problems. The archetypical example of this method is
Steiner’s proof of the isoperimetric inequality, as made rigorous in the context of
sets of finite perimeter by De Giorgi [6]. We consider here the problem of under-
standing rigidity of equality cases in a given symmetrization inequality. Sufficient
conditions for rigidity of equality cases have been obtained in the case of the Polya-
Szego inequality for Dirichlet-type integrals (Brothers and Ziemer [2]), and in the
case of the Steiner’s perimeter inequality for perimeter of sets (Chleb́ık, Cianchi
and Fusco [5]). We have obtained geometric conditions that actually characterize
rigidity in two model examples: Ehrhard’s symmetrization for Gaussian perimeter
[3], and Steiner’s symmetrization for Euclidean perimeter [4]. We focus here on
the latter problem.

Consider a Borel function v : Rn−1 → [0,∞), and let F [v] be the sets of points
x = (x′, xn) ∈ Rn such that |xn| < v(x′)/2. Given a set E ⊂ Rn, one denotes by
Ez = {t ∈ R : (z, t) ∈ E} the vertical section of E above z ∈ Rn−1, says that E
is v-distributed if v(z) = H1(Ez) for Hn−1-a.e. z ∈ Rn−1, and sets Es = F [v] for
the Steiner’s symmetral of E. Steiner’s inequality gives

(0.1) P (E) ≥ P (F [v]) , for E ⊂ Rn v-distributed ,

where P (E) denotes the distributional perimeter of E. (We notice that P (F [v]) <
∞ if and only if

(0.2) v ∈ BV (Rn−1) , Hn−1({v > 0}) < ∞ ,

where BV (Rn−1) is the space of functions of bounded variation on Rn−1.) Let us
denote by M(v) the set of equality cases in (0.1). The rigidity problem amounts
in characterizing those function v as in (0.2) such that

(0.3) M(v) =
{

t en + F [v] : t ∈ R

}

.

The inclusion ⊃ is, of course, trivial, while the inclusion ⊂ may fail for various
reasons: (i) the projection {v > 0} of F [v] could be “disconnected”; (ii) the set
{v = 0} may “disconnect” the projection; (iii) it could be that the jump set of
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v “disconnects” the projection; (iv) the projection could contain an “integrable”
Cantorian part of Dv. Chleb́ık, Cianchi and Fusco in [5] provide a sufficient
condition for rigidity by ruling out these four possibilities.

Theorem 0.1 (Chleb́ık, Cianchi, Fusco [5]). If (a) Ω is an open connected set,
(b) v ∈ W 1,1(Ω), and (c) the Lebesgue representative of v is positive Hn−2-a.e.
on Ω, then P (E;Ω×R) = P (F [v];Ω×R) implies the existence of t ∈ R such that
E ∩ (Ω× R) = (t en + F [v]) ∩ (Ω× R).

Notice that assumptions (a) and (c) – together with the choice of working with
the localized Steiner’s inequality over Ω×R – exclude problems (i) and (ii), while
assumption (b) excludes the existence of jump or Cantorian parts of Dv inside Ω,
and thus rules out problems (iii) and (iv). Simple examples shows that Theorem
0.1 does not characterize rigidity even in the case of polyhedra. In order to improve
on this result one thus needs to understand rigidity in the presence of jumps or
Cantorian parts of Dv, or of substantially large regions where v vanishes. Since
the various sets involved in this heuristic statements are just Borel sets, we first
need to specify in which sense a Borel set K disconnects another Borel set G.
Precisely, in [3] we introduce the following definition: if K and G are Borel sets in
Rm, then K essentially disconnects G if there exists a non-trivial Borel partition
{G+, G−} of G such that

G(1) ∩ ∂eG+ ∩ ∂eG− ⊂Hm−1 K .

(Here, G(t) is the set of point of density t ∈ [0, 1] of G, and ∂eG = Rm \ (G(0) ∪
G(1)).) Notice that if Hm−1(K∆K ′) = Hm(G∆G′) = 0, then K essentially dis-
connects G if and only if K ′ essentially disconnects G′. Moreover, we say that G
is essentially connected if the empty set does not essentially disconnect G. When
G is of finite perimeter, this is equivalent to asking that G is indecomposable in
the sense of [7], [1]; see also [8, 4.2.25].

Let us now denote by v∧ and v∨ the lower and upper approximate limits of
v (so that v∧ and v∨ are pointwise unambiguously defined on Rn−1 in Hn−1-
equivalence class of v), let [v] = v∨ − v∧ denote the jump of v, and let Sv =
{[v] > 0}. Starting from a sharp regularity result for barycenter functions of sets
with segments as sections, see Theorem 0.2, we can use these notions to formulate
several characterizations of rigidity.

Theorem 0.2. If E is a v-distributed set with segments as vertical sections and
bE(z) denotes the barycenter of Ez, then bM,δ = τM (1{v>δ} bE) ∈ BV (Rn−1) for
a.e. δ,M > 0, where τM (s) = max{−s,min{M, s}}, s ∈ R. Moreover, E ∈ M(v)
if and only if the approximate gradient ∇bE of bE vanishes Hn−1-a.e. on Rn−1,
2 [bE] ≤ [v] Hn−2-a.e. on {v∧ > 0}, and DcbM,δ = fM,δ Dcv for a Borel function
fM,δ : Rn−1 → [−1/2, 1/2].

Theorem 0.3. If v satisfies (0.2) and Dsv!{v∧ > 0} = 0, then rigidity holds if
and only if {v∧ = 0} does not essentially disconnect {v > 0}. This last condition
is in turn equivalent in asking that F [v] is indecomposable.
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Theorem 0.4. If F [v] is a generalized polyhedron (roughly speaking, v consists
of finitely many Sobolev functions over finitely many indecomposable sets of fi-
nite perimeter), then rigidity holds if and only if {v∧ = 0} ∪ {[v] > ϵ} does not
essentially disconnect {v > 0}.

Theorem 0.5. If v ∈ SBV (Rn−1) (i.e. Dcv = 0) and Sv is locally Hn−2-finite,
then every E ∈ M(v) is obtained by countably many vertical translations of F [v]
(above disjoint Borel sets in Rn−1). In particular, rigidity holds if and only if v
has the following mismatched stairway property: If {Gh}h∈I is a Borel partition
of {v > 0} with

∑

h∈I P (Gh ∩ BR ∩ {v > δ}) < ∞ for a.e. δ, R > 0, and if
{ch}h∈I ⊂ R is a sequence with ch ≠ ck whenever h ≠ k, then there exist h0, k0 ∈ I
with h0 ≠ k0, and a Borel set Σ with

Σ ⊂ ∂eGh0 ∩ ∂eGk0 ∩ {v∧ > 0} , Hn−2(Σ) > 0 ,

such that [v](z) < 2|ch0 − ck0 | for every z ∈ Σ.

References

[1] Ambrosio, L., Caselles, V., Masnou, S. and Morel, J.M., Connected components of sets of
finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), 3 (2001),
1, 39–92.

[2] Brothers, J. E., Ziemer, W. P. Minimal rearrangements of Sobolev functions J. Reine Angew.
Math. 384 (1988), 153–179.

[3] Cagnetti, F., Colombo, M., De Philippis, G., Maggi, F., Essential connectedness and the
rigidity problem for Gaussian symmetrization, preprint arXiv:1304.4527

[4] Cagnetti, F., Colombo, M., De Philippis, G., Maggi, F., Rigidity of equality cases in Steiner’s
perimeter inequality, in preparation.

[5] Chleb́ık, M., Cianchi, A., Fusco N., The perimeter inequality under Steiner symmetrization:
cases of equality, Ann. of Math. (2), 162 (2005), no. 1, 525–555.
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Uniformization of surfaces with conical singularities

Andrea Malchiodi

(joint work with D.Bartolucci, A.Carlotto, F.De Marchis, D.Ruiz)

We study some singular equations, motivated by the problem of the Gaussian
curvature prescription, and from some models in physics such as self-dual Chern-
Simons theory or Electroweak theory: we prove some existence results exploiting
the variational structure of the problem.

Consider a compact surface Σ endowed with a metric g: with the conformal
change of metric g̃ = e2wg one has

−∆gw +Kg = Kg̃e
2w,


