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Regularity of free boundaries in anisotropic capillarity problems and
the validity of Young’s law

Francesco Maggi

(joint work with G. De Philippis)

The classical description of capillarity phenomena involves the study of Gauss free
energy for a liquid inside a container, which takes the form

Hn−1(A ∩ ∂E) +

∫

∂A∩∂E
σ(x) dHn−1(x) +

∫

E
g(x) dx − l |E| .

Here A is an open set in Rn (n ≥ 2), the container of the fluid; E ⊂ A is the
region occupied by the fluid, with volume |E|; Hn−1(A ∩ ∂E) is the total surface
tension energy of the interior interface A ∩ ∂E; the surface tension between the
liquid and the boundary walls of the container is obtained by integrating over the
wetted surface ∂A ∩ ∂E the coefficient σ(x); finally, g(x) is the potential energy
density (typically, when n = 3 one considers g(x) = ρ g0 x3 where ρ is the constant
density of the fluid and g0 the gravity of Earth), and l is a Lagrange multiplier. If
M = A ∩ ∂E is smooth enough, then the equilibrium conditions are

HE + g = l on A ∩ ∂E ,(1)

νE · νA = σ on ∂A ∩ ∂E ,(2)

where νE is the outer unit normal to E and HE is the mean curvature of A∩ ∂E.
These conditions, first described by Young in [12], have then been expressed in
analytic form by Laplace in 1805; see [5]. The second condition, commonly known
as Young’s law, enforces |σ| ≤ 1 and is independent from the potential energy g.

Volume constrained minimizers of the Gauss free energy are found in the class
of sets of finite perimeter. One is thus lead to discuss a regularity problem in
order to validate (1) and (2). Interior regularity has been addressed in the classical
theory developed by De Giorgi, Federer, Almgren, and others in the Sixties: if ∂∗E
denotes the reduced boundary of the minimizer E, and we set M = closure(A ∩
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∂∗E), then there exists a closed set Σ ⊂ M such that M \ Σ is “as smooth as
g allows it to be” and Σ has Hausdorff dimension at most n − 8. The situation
concerning boundary regularity is less conclusive. Taylor [11] proved in dimension
n = 3 everywhere regularity of M at ∂A (in the more general context of (M, ξ, δ)-
minimal sets). Cafferelli and Friedman [2] addressed the sessile droplet problem
(A = {xn > 0} and g(x) = g(xn)) in the case when −1 < σ(x) < 0 for every
x ∈ {xn = 0} and 2 ≤ n ≤ 7 by mixing symmetrization arguments, barrier
techniques, interior regularity for perimeter minimizers, and the regularity theory
of free boundary problems associated to quasilinear uniformly elliptic equations.
Grüter [7, 8, 9] and Grüter and Jost [6] addressed the case when σ ≡ 0 by exploiting
reflection techniques and interior regularity.

Motivated by applications to relative isoperimetric problems in Riemannian and
Finsler geometry, one would also like to understand the regularity of minimizers
of anisotropic surface energies of the form

I(E) =

∫

A∩∂E
Φ(νE) dHn−1 +

∫

∂A∩∂E
σ dHn−1

where Φ : A × Rn → [0,∞) is such that Φ(x, ·) positively one-homogeneous and
convex on Rn for every x ∈ A. The typical assumption to obtain regularity here is
that Φ(x, ν) is l-elliptic in ν: roughly speaking, one asks that for some l ∈ (0, 1],
and for every x ∈ A and ν ∈ Sn−1,

l ≤ Φ(x, ν) ≤ 1

l
, ∇2Φ(x, ν) ≥ lId on ν⊥ .

Under this assumption, interior regularity is known since the works of Almgren [1],
and Schoen, Simon and Almgren [10]. In [3, 4] we address boundary regularity.

Theorem 1. Let ∂A ∈ C1,1, Φ be l-elliptic in ν and uniformly Lipschitz in x,
let σ ∈ Lip(Rn) be such that −Φ(x,−νA) < σ(x) < Φ(x, νA) for x ∈ ∂A, and let
E ⊂ A be such that

I(E) ≤ I(F ) + Λ |E∆F | ,
whenever F ⊂ A, E∆F ⊂⊂ Bx,r where x ∈ A and r < δ. Then E is equivalent to
an open set, ∂E ∩ ∂A is a set of finite perimeter in ∂A, and there exists a closed
set Σ ⊂ closure(A∩∂E) =: M such that M \Σ is a C1,1/2-manifold with boundary,
Hn−3(Σ) = 0, and the (anisotropic) Young’s law

∇Φ(x, νE(x)) · νA(x) = σ(x) ,

holds for every x ∈ (M \ Σ) ∩ ∂A.

As said, the fact that A ∩ (M \Σ) is a C1,1/2-manifold for a closed set Σ ⊂ M
with Hn−3(A ∩ Σ) = 0 is proved in [1, 10]: our contribution here is addressing
the situation at boundary points, namely, on M ∩ ∂A. As explained above, this
last problem was still partially open in the isotropic case, and, to the best of
our knowledge, completely open in the genuinely anisotropic case. In [3] we have
proved Theorem 1 in a weaker form, where one only concludes thatHn−2(∂A∩Σ) =
0; starting from this dimensional estimate, in [4] we have further developed our
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analysis to conclude thatHn−3(∂A∩Σ) = 0, thus matching the best known interior
regularity results.
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The structure of minimum matchings

Mircea Petrache

(joint work with Roger Züst)

1. Calibrations without orientation

We recall here the setting of the theory of calibrations (see [5], [4]). The following
is a simple proof that the shortest oriented curve connecting two points a, b ∈ Rn

is the oriented segment [a, b]. Let α be the constant coefficient differential 1-form
dual to the unit vector τ orienting [a, b]. Then for any other Lipschitz curve γ
from a to b we have

(1) lenght([a, b]) =

∫

[a,b]
α =

∫

γ
α ≤ lenght(γ) ,


