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the identification of a natural scale-invariant problem and a way of localizing
the evolution. For the former, we consider peeling a Poission cloud inside an
infinite paraboloid. For the latter, we sharpen the original estimates of Dalal. The
Martingale argument implies homogenization of the scale-invariant problem. One
concludes the theorem by invoking the uniqueness of viscosity solutions via the
perturbed test function method.
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The starting point of this study if the analysis of liquid-vapor phase transitions
in a model from statistical mechanics, based on the minimization of the Gates-
Penrose-Lebowitz (GPL) free energy

GPL(u) =
1

2

∫

TL

dx

∫

TL

J(|x− y|) |u(x)− u(y)|2 dy +

∫

TL

W (u) .

Here TL denotes a n-dimensional flat torus of side length L, J(r) is a bounded
decreasing interaction kernel with compact support on [0, 1] (L ≫ 1) such that
∫

Rn J(|x|) dx = 1, u : TL → (−1, 1) represents a particle-hole density, and W :
(−1, 1) → [0,∞) is an even, smooth, double-well potential, with W (±m0) = 0
and W ′′(m0) > 0 for some m0 ∈ (0, 1). We stress that the length scale L is large
compared to the length scale of the interaction kernel, which was set to unit by
requiring sptJ = [0, 1].

Given a volume fraction m ∈ (−1, 1), one minimizes GPL(u) under the con-
straint that L−n

∫

TL
u = m. Very much like in the case of the Cahn-Hilliard free

energy, the double-well favors two constant states (namely, u ≡ m0 and u ≡ −m0)
and the interaction energy penalizes variations. In particular, when m = ±m0

there is no doubt that the constant states are the unique minimizers. For other
volume fractions m we expect to see a competition between the two terms in the
energy, leading to transition profiles u between a m0-phase and a (−m0)-phase.

Because of this competition, in both models, one expects the formation of almost
spherical “droplets”, wheneverm ∈ (−m0,m0) and L is large enough. An heuristic
analysis shows that this should also happen when m → ±m0 as L → ∞, and
precisely for m = −m0 +K L−n/(n+1) with K larger than some critical K∗. This
kind of study for the Cahn-Hilliard model has been addressed, independently, in
[3, 4]. There are two significant differences between the Cahn-Hilliard and the
GPL models: first, since the interaction kernel J is not singular, minimizers of



1966 Oberwolfach Report 34/2016

GPL possess no smoothness property, and second, because of the statistical origin
of the model, one is actually interested in understanding all near-minimizers of
GPL, as the most likely observed states of the system. On a deeper level, almost
sphericity of droplets is related to the Euclidean isoperimetric inequality in the
Cahn-Hilliard case, and to the Euclidean concentration inequality in the GPL
case. As explained below, a quantitative analysis of near-minimizers is definitely
subtler for Euclidean concentration than for Euclidean isoperimetry.

Why round droplets? Guessing that near-minimizing u are sharp transitions
between the constant densities m0 and −m0, concentrated along the boundary
of {u ≥ m0}, and with diam ({u ≥ m0}) way smaller than L, one should be
able to argue as if TL ≈ Rn. On the whole space, it makes sense to compare
u by its spherically symmetric decreasing rearrangement u∗, whose super-level
sets are balls with same volume as the corresponding super-level sets of u. This
equimensurability property guarantees that

∫

Rn g(u) =
∫

Rn g(u∗) for every g : R →
R, and thus, by combining the identity

GPL(u) =

∫

Rn

u2 −
∫

Rn

dx

∫

Rn

J(|x− y|)u(x)u(y) dy

(recall that
∫

Rn J(|x|) dx = 1) with the Riesz rearrangement inequality
∫

Rn

dx

∫

Rn

J(|x− y|)u(x)u(y) dy ≤
∫

Rn

dx

∫

Rn

J(|x − y|)u∗(x)u∗(y) dy

we deduce that GPL(u) ≥ GPL(u∗). In particular, if u is a minimizer or a
near-minimizer, so it is u∗. The quantitative analysis of radially decreasing near-
minimizers of the GPL model in the spherical droplet regime has been addressed in
[1, 2, 5]. The next step is thus understanding how far a generic near minimizer u is
from being almost spherical, i.e. how to control the distance of u from u∗ in terms
of GPL(u)− GPL(u∗). Considering the discussion of equality cases in the Riesz
rearrangement inequality can be addressed in terms of a discussion of equality
cases for the Euclidean concentration inequality, there are two main problems to
address:

(i) provide a stability estimate for the Euclidean concentration inequality;
(ii) exploit such an estimate to obtain a robust improvement of the Riesz

rearrangement inequality.

Both problems are addressed in the joint paper [6] with Eric Carlen, by exploit-
ing suitable geometric arguments. These results pave the a way to a quantitative
description of every near-minimizer of the GPL free energy in the droplet regime.

The paper [6] also indicate some interesting problems in the theory of geomet-
ric inequalities. For example, the arguments presented in [6] are not sufficient to
produce a sharp stability estimates for Euclidean concentration. From the math-
ematical viewpoint, this last problem is particularly interesting because it seems
out of reach for all the three different approaches developed in proving the closely
related sharp stability estimate for Euclidean isoperimetry [13, 10, 7]. A new ap-
proach is thus required, and this is the content of the joint paper [9] with Alessio
Figalli and Connor Mooney.
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Let us recall that the Euclidean concentration inequality states that if E is a
subset of Rn, E∗ is a ball with same volume as E, and Nr(E) = {x ∈ Rn :
dist(x,E) < r} denotes the r-neighborhood of E, then

(1) |Nr(E)| ≥ |Nr(E
∗)| , ∀r > 0 ,

with equality if and only if, up to a zero volume set, E is a ball. The main result
proved in [9] is the existence of c(n) > 0 such that whenever |E| = |B|, then there
exists x ∈ Rn with

(2) max
{

r,
1

r

}( |Nr(E)|
|Nr(E∗)|

− 1
)

≥ c(n) |E∆(x +B)|2 , ∀r > 0 .

The factor max{r, r−1} is needed for the inequality to be true, as otherwise the
left-hand side of the inequality tends to 0 as r → 0+ or r → +∞. Notice also that
in the limit r → 0+, (2) implies the sharp quantitative isoperimetric inequality:
there exists c∗(n) > 0 such that whenever |E| = |B|, then there exists x ∈ Rn with

(3) P (E)− P (B) ≥ c∗(n) |E∆(x +B)|2 ,

provided P (E) denotes the perimeter of E (i.e., the (n− 1)-dimensional measure
of the boundary of E).

The approach to (3) developed in [13] is based on dimension induction through
the localization of the isoperimetric deficit P (E) − P (B) on hyperplane slices of
E. This kind of argument, clearly, does not combine smoothly with the nonlocal
nature of the operation of forming the Minkowski sum Nr(E) = E+Br. Although
one can use localization by slicing and dimension induction to obtain non-sharp
quantitative versions of the Brunn-Minkowski inequality, see [8], it seems quite
hard to optimize this approach to the extent of proving sharp inequalities. The
mass transportation approach to (3) developed in [10] can be used to prove (2)
in the special case that E is convex. This is already detailed in [10] and, with
a more direct argument, in [11]. Extending this analysis to the case when E is
non-convex seems hard because it would require, for example in the case r = 1 and
with T denoting the Brenier map between E and B, to control the distance of E
from its convex envelope in terms of the non-negative quantity |S(E)|− |N1(B)|,
where S = Id + T . Finally, the quite versatile approach to (3) proposed in [7] is
based on the regularity theory for local minimizers of the perimeter functional, an
ingredient that is completely missing when the functional under consideration is
the volume of the r-neighborhood of a set.

The proof of (2) given in [9] is based on two separate arguments, one degener-
ating as r becomes larger, the one valid only if r is large enough. Both arguments
move from a “regularization by viscosity” procedure based on taking an envelope
of E by balls of radius r contained in its complement. The estimate degenerating
for r large is obtained by combining the strong form of (2) obtained in [12] with
the reduction to this notion of r-convex envelope. In large r-regime, one shows by
a geometric construction that any set with |E| = |B| and r (|Nr(E)|/|Nr(B)|− 1)
small enough must have positive reach of order one in the sense of Federer. The
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proof is then completed by combining the Steiner-Federer formula for sets of pos-
itive reach with (3).
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Asymptotic behavior of the inverse mean curvature flows in the
hyperbolic spaces
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The solution of the inverse mean curvature flow is a family of smooth maps
Ft : Σn−1 → Mn satisfying the evolution equation

∂Ft

∂t
=

ν

H
,

where H is the mean curvature and ν is the unit outer normal of Σt = Ft(Σ). Ge-
roch [2] introduced this parabolic flow and discovered that the Hawking mass of
a surface is monotone nondecreasing along the flow provided the scalar curvature
of M is nonnegative. Jang-Wald [5] observed that if there is a smooth solution
of the inverse mean curvature flow which starts from the horizon and exists for
all time, then the Penrose inequality follows the Geroch monotonicity. However,


