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from the kernel of I4 remains uniformly bounded away from 0. We note that this
lack of coercivity is not prevented by the fact that the kernel is finite dimensional.

Critical and almost-critical points in isoperimetric problems
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De Giorgi’s isoperimetric inequality [1] states that if Ω is a measurable set with
finite volume |Ω| < ∞, then the distributional perimeter P (Ω) of Ω satisfies

(1) P (Ω) ≥ (n+ 1) |B1|1/(n+1) |Ω|n/(n+1) B1 = {x : |x| < 1} ,
with equality if and only if Ω is a equivalent to a ball. In other words, among
sets of finite perimeter (SFP) with fixed volume, balls are the unique minimizers
of perimeter. Looking more generally at critical points, rather than at minimizers,
for a variation ft(x) = x+ tX(x)+O(t2) with X ∈ C1

c (R
n+1;Rn+1) we have that
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Thus a critical point of perimeter must satisfy, for a constant λ,

(2)

∫

∂∗Ω
div∂

∗ΩX = λ

∫

∂∗Ω
X · νΩ , ∀X ∈ C1

c .

Here ∂∗Ω is the reduced boundary of Ω, νΩ the outer unit normal to Ω in the
measure theoretic sense, and, necessarily, λ = H0

Ω, where

H0
Ω =

nP (Ω)

(n+ 1) |Ω| .

When ∂Ω ∈ C2, then (2) is equivalent to HΩ ≡ H0
Ω along ∂Ω, where HΩ denotes

the mean curvature of Ω (w.r.t. νΩ); moreover, in this case, |Ω| < ∞ implies
that Ω is bounded (by area monotonicity), and so the moving planes method of
Alexandrov [2] can be applied to conclude that among C2-sets with fixed volume,
balls are the unique critical points of perimeter. The gap in the characterization
of critical points between C2-sets and finite perimeter sets is addressed in a joint
paper with Delgadino [3], where we prove the following theorem.

Theorem [Alexandrov’s theorem revisited] Among sets of finite perimeter with
fixed volume, finite unions of balls are the unique critical points of perimeter.

Wente’s torus is a non-shperical example of a 2-dimensional stationary unit
density integer rectifiable varifold in R3 with constant mean curvature (CMC). As
an immediate corollary,

Compactness I: If {Ωj}j is a sequence of sets of finite perimeter and finite
volume with Ωj → Ω in L1, such that there exists a constant λ with

(3) lim
j→∞

P (Ωj) = P (Ω) lim
j→∞

∫

∂∗Ωj

{

div∂
∗Ωj X − λ X · νΩj

}

= 0 ,
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whenever X ∈ C1
c , then Ω is a finite union of balls.

This compactness statement is interesting in view of the many variational prob-
lems where almost-CMC boundaries arise. Examples include capillarity type prob-
lems, CMC-foliations in general relativity, and long-time behavior of weak solu-
tions to mean curvature flows (MCF). Weak solutions to the volume preserving
MCF are generally constructed as families of SFP {Ω(t)}t≥0 with distributional
mean curvature Ht ∈ L2(Hn!∂∗Ω(t)), and satisfy the dissipation inequality

(4)

∫ ∞

0
dt

∫

∂∗Ω(t)
(Ht − ⟨Ht⟩)2 dHn ≤ P (Ω(0)) < ∞ .

Now assume, for a sequence of times tj → ∞, that: (i) the averages ⟨Htj ⟩ are
bounded; (ii) there exists Ω such that Ω(tj) → Ω in L1 and P (Ω(tj)) → P (Ω);
and (iii) exploiting (4), and up to extracting subsequences, that

lim
j→∞

∫

∂∗Ω(tj)
(Htj − ⟨Htj ⟩)2 dHn = 0 .

Then Ω is necessarily a finite union of balls, thanks to Compactness I. The assump-
tion P (Ωj) → P (Ω) in Compactness I can be dropped if working with smooth sets
with HΩj converging to a constant in L2, and satisfying a uniform mean convexity
bound. More precisely, in a joint paper with Delgadino, Mihaila and Neumayer
[4] we proved:

Compactness II: If {Ωj}j is a sequence of open sets with smooth boundary and
finite volume, normalized by scaling so to have H0

Ωj
= n = HB1

and such that for
a constant κ > 0

HΩj ≥ κ on ∂Ωj

then

Ωj → Ω in L1 and lim
j→∞

∫

∂Ωj

|HΩj − n|2 = 0

imply that Ω is a finite union of unit balls and that P (Ωj) → P (Ω).

This second compactness statement is a particular case of a more general com-
pactness result, related to the anisotropic version of Alexandrov’s theorem. Define
a geometric integrand to be a convex, one-homogenous function F : Rn+1 → [0,∞),
positive on the sphere. The Wulff shape of F is the bounded open convex set WF ,

WF =
⋂

ν∈Sn

{

x ∈ R
n+1 : x · ν < F (ν)

}

.

The isoperimetric inequality (1) holds with WF in place of B1, and with the
anisotropic energy

F(Ω) =

∫

∂∗Ω
F (νΩ) dHn

in place of P (Ω). In particular, among SFP with fixed volume, F -Wulff shapes are
the unique minimizers of F [7]. Given a variation ft(x) = x+ tX(x) +O(t2), the
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convexity of F implies the existence of the first variation

δF|Ω(X) = lim
t→0+

F(ft(Ω)) .

If Ω is a local minimizer of F at fixed volume, then δF|Ω(X) ≥ 0 on every X ∈ C1
c

s.t.
∫

∂∗ΩX · νΩ = 0. A set of finite perimeter satisfying this property is a critical
point of F at fixed volume.

Conjecture: F -Wulff shapes are the unique sets of finite perimeter and finite
volume that are critical points of F at fixed volume.

This anisotropic version of Alexandrov’s theorem is open even when Ω is as-
sumed to be an open set with Lipschitz boundary rather than to be merely of finite
perimeter. To the best of our knowledge this question seems to have been consid-
ered for the first time in a paper of Morgan [6], where it is affirmatively solved in the
planar case, and, actually, in the most general case of immersed closed rectifiable
curves. When F is smooth and λ-uniformly elliptic (i.e., λ Id ≤ ∇2F (ν) ≤ Id/λ on
ν⊥ for every ν), and Ω has a C2-boundary, then the condition of being a critical
point of F at fixed volume translates into

HF
Ω = div∂Ω(∇F (νΩ))

being constant. (By construction, we always have HF
WF

= n.) Assuming that Ω is
bounded, as proved by He, Li, Ma and Ge [5], HF

Ω is constant if and only if Ω is
an F -Wulff shape. From the physical viewpoint, the most significant case would
however be that of crystalline integrands F , obtained as maxima of finitely many
linear functions. In the joint paper [4] with Delgadino, Mihaila and Neumayer,
we proved the following result, pointing to the validity of the above conjecture for
every integrand F .

Compactness III: If {Fj}j is a sequence of smooth, λj-elliptic integrands with
m ≤ Fj ≤ M for uniformly-in-j positive constants m and M ; and if {Ωj}j is
a sequence of open sets with smooth boundary and finite volume, normalized by
scaling so to have nFj(Ωj)/[(n+ 1)|Ωj |] = n and such that for a constant κ > 0

(5) H
Fj

Ωj
≥ κ on ∂Ωj ;

then

(6) Fj → F on Rn+1 Ωj → Ω in L1 lim
j→∞

1

λ2j

∫

∂Ωj

|HFj

Ωj
− n|2 = 0

imply that Ω is a finite union of F -Wulff shapes, with Fj(Ωj) → F(Ω).

The conjecture would follow from Compactness III by solving the following:

Approximation problem: Given a geometric integrand F , consider a bounded
open set Ω with boundary at most as regular as that of WF , and which is a critical
point of F at fixed volume. Construct sequences {Fj}j of smooth λj-elliptic inte-
grands, and {Ωj}j of bounded smooth sets satisfying (5) for some uniform κ > 0,
in such a way that (6) holds.
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Minimal surfaces and the Allen–Cahn equation on 3-manifolds

Christos Mantoulidis

(joint work with Otis Chodosh)

Fix (M3, g) to be a closed Riemannian 3-manifold. The Allen–Cahn equation

(1) ε2∆gu = W ′(u)

is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces.
For instance, it is known that the Allen–Cahn functional

Eε[u] :=

∫

M

(

ε

2
|∇u|2 + W (u)

ε

)

dµg,

whose critical points satisfy (1), Γ-converges as ε→ 0 to the perimeter functional
[12, 14] and the level sets of Eε-minimizing solutions to (1) converge as ε → 0 to
area-minimizing boundaries. When u is not Eε-minimizing, the limit may occur
with high multiplicity. Together with Otis Chodosh we studied solutions to (1)
on 3-manifolds with uniform Eε-bounds and uniform Morse index bounds and
showed that multiplicity does not occur when the metric g is “bumpy,” i.e., when
no immersed minimal surface carries nontrivial Jacobi fields; bumpy metrics are
generic in the sense of Baire category—see White [16]. This resolves a strong form
of the “multiplicity one” conjecture of Marques–Neves [10] for Allen–Cahn. Our
main theorem is:

Theorem 1 ([1]). Suppose that ui are critical points of Eεi with εi → 0 and

Eεi [ui] ≤ E0, ind(ui) ≤ I0 for all i = 1, 2, . . .

Passing to a subsequence, for each t ∈ (−1, 1), {ui = t} converges in the Hausdorff
sense and in C2,α

loc away from ≤ I0 points to a smooth closed minimal surface Σ.
For any connected component Σ′ ⊂ Σ, either:

• Σ′ is two-sided and occurs as a multiplicity one graphical C2,α limit; or,


