Chapter 6
AUTOMORPHISMS OF FORMS

We begin by recalling some notation. If \(F = [a, b, c] \), the matrix form of \(F \) is \([F] = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \). If \(S \) is the substitution \(S: X \to rX + tY, \ Y \to sX + uY \), the matrix form of \(S \) is \([S] = \begin{bmatrix} r & s \\ t & u \end{bmatrix} \). Recalling that \(SF \) is the form resulting from applying \(S \) to \(F \), Lemma 1.2(g) says \([S][F][S]^T = [SF] \). Thus having \(SF = F \) is equivalent to having \([S][F][S]^T = [F] \).

Definitions: The substitution \(S \) is an automorphism of the form \(F \) if \(SF = F \). An automorphism \(S \) of \(F \) is either proper or improper, depending on whether \(S \) is a proper or improper substitution. The sets of automorphisms, proper automorphisms, and improper automorphisms of \(F \) will be denoted \(\text{Aut}(F) \), \(\text{Aut}^+(F) \), and \(\text{Aut}^-(F) \), respectively.

Recall that to complete the proof of Gauss' duplication theorem, we must find the size of \(\text{AMB}(\Delta) \). Now \(\text{PEC}(F) \in \text{AMB}(\Delta) \) IFF \(F \) is improperly equivalent to itself IFF \(\text{Aut}^-(F) \) is not empty. To understand \(\text{Aut}^-(F) \), we must first understand \(\text{Aut}^+(F) \).

It is easily seen that \(\text{Aut}^+(F) \) is a subgroup of \(\text{SL}_2(\mathbb{Z}) \). The goal of this chapter is to show that if \(F \) is primitive, then \(\text{Aut}^+(F) \) is isomorphic to \(\mathbb{Z}_{\Delta+1} \) (with \(\Delta = \Delta F \)).

In this chapter, we will do slightly more than is strictly necessary.

6.1 Exercise. Let \(F \) and \(G \) be properly equivalent forms. Then \(\text{Aut}^+(F) \) and \(\text{Aut}^+(G) \) are both subgroups of \(\text{SL}_2(\mathbb{Z}) \). Show that they are conjugate to each other.

Notation: In this chapter, \(R \) will be the matrix \(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \). Also, if \(F = [a, b, c] \), then \(L_F = 2[F]R = \begin{bmatrix} -b & 2a \\ -2c & b \end{bmatrix} \).
6.2 Lemma: \[\begin{bmatrix} ef \\ gh \end{bmatrix} \mathbb{R} = \mathbb{R} \begin{bmatrix} h - g \\ -f \end{bmatrix}\]

Proof: Calculate.

6.3 Lemma: With \(I\) the \(2\times2\) identity matrix, \(L_F^2 = \Delta I\).

Proof: Calculate.

Definition: We define a map \(\Gamma_F : Q[\sqrt{\Delta}] \rightarrow M_2(Q)\) as follows.

For \(\gamma = v + w\sqrt{\Delta}\), let \(\Gamma_F(\gamma) = vI + wL_F = \begin{bmatrix} v - bw & 2aw \\ -2cw & v + bw \end{bmatrix}\).

(Note that \(\Gamma_F(1) = I\) and \(\Gamma_F(\sqrt{\Delta}) = L_F\).)

6.4 Lemma: \(\Gamma_F\) is an injective homomorphism. Also, the determinant of \(\Gamma_F(\gamma)\) equals \(N(\gamma)\).

Proof: The final statement is an easy calculation. That \(\Gamma_F\) preserves addition is trivial. That it preserves multiplication follows easily from Lemma 6.3. Since \(\Delta\) nonsquare implies \(a \neq 0\), showing our map is injective is straightforward.

6.5 Lemma: a) \(\Gamma_F(\mathbb{R}_\Delta) \subseteq M_2(\mathbb{Z})\) (the set of \(2\times2\) matrices with integral entries).

b) Suppose \(F\) is primitive. Then \(\Gamma_F(\mathbb{R}_\Delta) = \Gamma_F(Q[\sqrt{\Delta}]) \cap M_2(\mathbb{Z})\).

Proof: a) We do the case that \(\Delta\) is odd, the other being easier. Let \(\alpha = x + y\delta \in \mathbb{R}_\Delta\) (\(x, y \in \mathbb{Z}\)). Now \(\alpha = x + y(1/2 + \sqrt{\Delta}/2) = v + w\sqrt{\Delta}\) with \(v = x + y/2\) and \(w = y/2\). The entries of \(\Gamma_F(\alpha)\) are \(2aw\), \(-2cw\), and \(v \pm bw\) and we must show these are integers. Clearly \(2aw = ay\) and \(-2cw = -cy\) are integers. Now \(v \pm bw = (x + y/2) \pm by/2\). If \(y\) is even, both are integers.
Suppose y is odd. Since Δ is odd, we know b is also odd, and again both those entries are integers.

b) Again we do the case that Δ is odd. One containment follows from part (a). For the other, suppose $\Gamma_F(v + w\sqrt{\Delta}) \in M_2(\mathbb{Z})$. We must show $v + w\sqrt{\Delta} \in R_{\Delta}$. As $\delta = 1/2 + \sqrt{\Delta}/2$, $v + w\sqrt{\Delta} = (v - w) + 2w\delta$. We need $v - w$ and $2w$ to be integers. We know the entries of $\Gamma_F(v + w\sqrt{\Delta})$ (i.e., $2aw$, $-2cw$, $v \pm bw$) are all integers. Since $v \pm bw$ are both integers, $2bw \in \mathbb{Z}$, as are $2aw$ and $2cw$. As F is primitive, $\gcd(a, b, c) = 1$, from which we see $2w \in \mathbb{Z}$ (as desired). Now $v \pm bw$ integers also gives $2v \in \mathbb{Z}$. Write $v = n/2$ and $w = m/2$ ($n, m \in \mathbb{Z}$). Now $v - bw = (n - mb)/2$ is an integer, so n and mb have the same parity. But b, like Δ, is odd. Thus n and m have the same parity, so $v - w = (n - m)/2$ is an integer. (When Δ is even, use that $bw \in \mathbb{Z}$.)

6.6 Lemma: Let F and G be forms of discriminant Δ. Let S be a proper substitution. The following are equivalent.

(i) $SF = G$.

(ii) $[S]L_F[S]^{-1} = L_G$.

(iii) For all $\gamma \in \mathbb{Q}[\sqrt{\Delta}]$, $[S]\Gamma_F(\gamma)[S]^{-1} = \Gamma_G(\gamma)$. (In other words, the composition of Γ_F and conjugation by $[S]$ equals Γ_G.)

Proof: ii) \iff iii): This follows easily from the facts that Γ_F and Γ_G are determined by $\Gamma_F(\sqrt{\Delta}) = L_F$ and $\Gamma_G(\sqrt{\Delta}) = L_G$, and that conjugation by $[S]$ is an automorphism of $M_2(\mathbb{Q})$.

If (i) holds, we have $[S][F][S]^T = [G]$. Now $L_G = 2[G]R = 2[S][F][S]^T R$. Let $[S] = \begin{bmatrix} r & s \\ t & u \end{bmatrix}$. By Lemma 6.2, $[S]^T R = \begin{bmatrix} r^t & s \\ t^u & u \end{bmatrix} = R \begin{bmatrix} u & -s \\ -t & r \end{bmatrix}$. Since $\det [S] = 1$, $\begin{bmatrix} u & -s \\ -t & r \end{bmatrix} = [S]^{-1}$, and so $L_G = 2[S][F]R[S]^{-1} = [S]L_F[S]^{-1}$, giving (ii). The reverse argument (and cancellation of $2R$) shows (ii) implies (i).
6.7 Corollary: If $\alpha \in \mathbb{U}_{\Delta,+1}$, then $\Gamma_F(\alpha) \in \text{Aut}^+(F)$.

Proof: By Lemmas 6.4 and 6.5, $\Gamma_F(\alpha)$ is an integral matrix with determinant 1, and so is the matrix form of a proper substitution S. Thus $\Gamma_F(\alpha) = [S]$. As Γ_F is a ring homomorphism which sends 1 to 1, $\Gamma_F(\alpha^{-1}) = [S]^{-1}$. Now $\Gamma_F(\sqrt{\Delta}) = L_F$, and so $[S]L_F[S]^{-1} = \Gamma_F(\alpha)\Gamma_F(\sqrt{\Delta})\Gamma_F(\alpha^{-1}) = \Gamma_F(\alpha\sqrt{\Delta}\alpha^{-1}) = \Gamma_F(\sqrt{\Delta}) = L_F$. Lemma 6.6 shows SF must be F, so that $\Gamma_F(\alpha) = [S] \in \text{Aut}^+(F)$.

6.8 Exercise: a) Suppose S is an improper substitution. Show $[S]L_F[S]^{-1} = -L_{SF}$. (Use Lemma 6.2 and modify the argument in Lemma 6.6.)

b) Suppose $\alpha \in \mathbb{U}_{\Delta}$, and $N(\alpha) = -1$. Show $\Gamma_F(\alpha) = [S]$ for an improper substitution S, and $SF = -F$. (Use that Γ_F is a homomorphism to show $L_F = -L_{SF}$.) (Note that contrary to what one might guess, $\Gamma_F(\alpha) \notin \text{Aut}^+(F)$.)

6.9 Lemma: Let r, s, t, and u be rational numbers. The following are equivalent.

i) $\begin{bmatrix} rs \\ tu \end{bmatrix}$ is in the image of $\mathbb{Q}[\sqrt{\Delta}]$ under Γ_F.

ii) $ra + bs = ua$ and $at = -cs$.

iii) $\begin{bmatrix} rs \\ tu \end{bmatrix}[F] = [F]\begin{bmatrix} u - t \\ -s & r \end{bmatrix}$.

iv) $\begin{bmatrix} rs \\ tu \end{bmatrix}$ commutes with L_F.
Proof: i) \implies iv): Suppose (i) holds. Since \(L_F = \Gamma_F(\sqrt{\Delta}) \) and since \(\Gamma_F \) is a homomorphism, (iv) follows from the commutivity of \(Q[\sqrt{\Delta}] \).

iv) \implies iii): Suppose (iv) holds. Let \(N = \begin{bmatrix} rs \\ tu \end{bmatrix} \) and \(M = \begin{bmatrix} u - t \\ -s \end{bmatrix} \). We have \(NL_F = L_FN \). Thus \(N(2[F]R) = (2[F]R)N \). By Lemma 6.2 we see that \(MR = RN \), and so \(N(2[F]R) = 2[F]MR \). The 2 and R can be canceled.

iii) \implies ii): Using that \([F] = \begin{bmatrix} a \\ b/2 \\ c \end{bmatrix} \), calculate the two products in (iii). Comparing the top rows of the two products, one sees that \(ra + bs/2 = ua - bs/2 \) and \(cs = -at \). (ii) follows.

ii) \implies i): (ii) implies \(ra + bs/2 = ua - bs/2 \) and \(cs = -at \). Recalling that \(\Delta \) nonsquare implies \(ac \) are nonzero, we divide the first equation by \(a \) to get \(r + bs/2a = u - bs/2a \). Call that number \(v \). From the second equality, we see \(s/2a = t/2c \). Call that number \(w \). It is now easily seen that \(\Gamma_F(v + w\sqrt{\Delta}) = vI + wL_F = \begin{bmatrix} v - bw & 2aw \\ -2cw & v + bw \end{bmatrix} = \begin{bmatrix} rs \\ tu \end{bmatrix} \).

6.10 Proposition: Let \(F \) be primitive. Then \(\text{Aut}^+(F) \) is isomorphic (as a multiplicative group) to \(\mathbb{I}_{\Delta,+1} \), (via \(\Gamma_F \)).

Proof: By Corollary 6.7, we know \(\Gamma_F \) carries \(\mathbb{I}_{\Delta,+1} \) into \(\text{Aut}^+(F) \). Lemma 6.4 tells us \(\Gamma_F \) is injective, and preserves multiplication.

It only remains to show that if \([S] = \begin{bmatrix} rs \\ tu \end{bmatrix} \in \text{Aut}^+(F) \), then \([S] = \Gamma_F(\alpha) \) for some \(\alpha \in \mathbb{I}_{\Delta,+1} \). (Here, \(r, s, t, \) and \(u \) are integers.)

Now \([S] \in \text{Aut}^+(F) \) is equivalent to \([S][F][S]^T = [F] \), and hence to \([S][F] = [F][S]^T \). As \(\text{Det} [S] = 1 \), that equation is \([rs] [F] = [F] [u - t] \). By Lemmas 6.9 and 6.5(b), \([S] \in \Gamma_F(Q[\sqrt{\Delta}]) \cap M_2(\mathbb{Z}) = \Gamma_F(R_{\Delta}) \). Thus for some
\(\alpha \in \mathbb{R}_\Delta, \Gamma_F(\alpha) = [S] \). By Lemma 6.4, \(N(\alpha) = \det [S] = 1 \), and so
\(\alpha \in \mathfrak{f}_\Delta + 1 \). as desired.

6.11 Exercise: Suppose \(F \) is primitive. Show \(\Gamma_F(\mathbb{Q}[\sqrt{\Delta}]) \cap \text{GL}_2(\mathbb{Z}) = \{[S] \mid \text{either } S \text{ is a proper substitution and } SF = F, \text{ or } S \text{ is an improper substitution and } SF = -F \} \). (See Exercise 6.8(b).) Note that \(\text{Aut}^-(F) \) is disjoint from \(\Gamma_F(\mathbb{Q}[\sqrt{\Delta}]) \).

6.12 Corollary: Let \(F \) be a Gaussian form of non-square discriminate \(\Delta \).

i) If \(\Delta > 0 \), then \(\text{Aut}^+(F) \) is isomorphic to \(\mathbb{Z}_2 \oplus \mathbb{Z} \).

ii) If \(\Delta = -3 \), then \(\text{Aut}^+(F) \) is isomorphic to \(\mathbb{Z}_6 \).

iii) If \(\Delta = -4 \), then \(\text{Aut}^+(F) \) is isomorphic to \(\mathbb{Z}_4 \).

iv) If \(\Delta < -4 \), then \(\text{Aut}^+(F) \) is isomorphic to \(\mathbb{Z}_2 \).

Proof: Combine Proposition 6.10 with Corollary 5.7(b) (for \(\Delta > 0 \)) and Exercise 5.4 (for \(\Delta < 0 \)).

6.13 Remark: Having determined \(\text{Aut}^+(F) \), we now consider \(\text{Aut}(F) \) (which we see is a subgroup of \(\text{GL}_2(\mathbb{Z}) \)). It might well happen that \(\text{Aut}(F) = \text{Aut}^+(F) \). This will be the case when there are no improper automorphisms of \(F \), or equivalently, when \(\text{PEC}(F) \) is not in \(\text{AMB}(\Delta) \). One example is \([2, 1, 5]\). In Example 3.9 we saw \([2, 1, 5]\) and \([2, -1, 5]\) are not properly equivalent. As they are improperly equivalent, \([2, 1, 5]\) cannot be improperly equivalent to itself.

Suppose there is an improper automorphism \(T \) of \(F \). Then it is easily seen that the set of all improper automorphisms of \(F \) is exactly \(\{TS \mid S \text{ is a proper automorphism of } F \} \). It follows that in this case, \(\text{Aut}^+(F) \) is a normal subgroup of index 2 in \(\text{Aut}(F) \).
As an example, let $F = [1, 0, -2]$. Now $\Delta = 8$ and $\tau_\Delta = 3 + 2\sqrt{2} = 3 + \sqrt{\Delta}$. Thus $\Gamma_F(\tau_\Delta) = 3I + L_F = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$ is a proper automorphism of F. Now $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ is an improper automorphism of F. Those two automorphisms do not commute.

There is one surprise concerning improper automorphisms of F, but we leave it for the next section, where we use it.

6.14 Exercise: Let $F = aX^2 + bXY + cY^2$ be a primitive form of discriminant Δ. Use Proposition 6.10 and Exercise 5.13 to show that $\text{Aut}^+(F)$ equals the set of all matrices of the form

$$
\begin{bmatrix}
\frac{u-bv}{2} & av \\
-cv & \frac{u+bv}{2}
\end{bmatrix},
$$

where (u, v) ranges over all solutions of $X^2 - \Delta Y^2 = 4$.