SECTION 1: INTRODUCTION. Lagrange proved that any positive integer was the sum of four or fewer numbers of the form x^2 with x a positive integer. Waring asked if given an $n \geq 2$, there is an $f = f(n)$ such that every positive integer is the sum of f or fewer numbers of the form x^n with x a positive integer. Hilbert showed the answer was yes, via a very difficult and sophisticated proof. Subsequently, Y. V. Linnik discovered an elementary proof, reported in chapter 3 of the lovely little book Three pearls of Number Theory by A. Y. Khinchin, [K], (at this writing, available from Dover Press). We here present a rewriting of that chapter, and also carry Linnik’s ideas somewhat further. In particular, corollary 3 below will show that if $P(X)$ is a non-constant polynomial with integral coefficients and with positive leading coefficient, and if there is an integer z with $P(z) = 1$, then there is an f such that all positive integers are the sum of f or fewer numbers of the form $P(x)$ with $P(x) > 0$. Waring’s problem concerns the special case $P(X) = X^n$, for which $P(1) = 1$.

Remark: Since $0^n = 0$, we could say that Hilbert proved there is an f such that every non-negative integer is the sum of exactly f numbers of the form x^n with $x \geq 0$. However, for our $P(X)$, perhaps there is no integer x with $P(x) = 0$. Thus, we need the ‘f or fewer’ version of the statement. However, by that phrase we will mean at least 1. That is, we do not allow sums with 0 terms.
Notation: We will work in the integers. $P(X)$ will be a degree $n > 0$ polynomial having integral coefficients, with leading coefficient $c > 0$. For Waring’s problem, one considers integers $x \geq 1$.

We will consider integers $x \geq \alpha$ where α is either some fixed integer, or is minus infinity. (We will see that the choice of α is almost irrelevant.) Let $S = \{x \geq \alpha \mid P(x) > 0\}$.

Let $D = \text{GCD}\{P(x) \mid x \in S\}$. Obviously, there must be a finite set $\{x_1, \ldots, x_t\} \subseteq S$ such that $D = \text{GCD}\{P(x_i) \mid 1 \leq i \leq t\}$. Letting $d_i = P(x_i) > 0$, we have $D = \text{GCD}(d_1, \ldots, d_t)$.

Remark: We digress with an interesting comment about D. As defined, it appears to depend upon S, and so upon α. Actually, we will now show that $D = \text{GCD}\{P(z) \mid z \text{ is an integer}\}$.

To see that, let $D' = \text{GCD}\{P(z) \mid z \text{ is an integer}\}$. Also select any integer y with $P(y) \neq 0$, and let $D'' = \text{GCD}\{P(x) \mid y \leq x \leq y + |P(y)| - 1\}$. We claim $D' = D''$. Clearly D' divides D''. To show D'' divides D', it will suffice to show that D'' divides $P(z)$ for any integer z.

Since D'' divides $P(y)$, we have $D'' \leq |P(y)|$. Therefore, there is an x with $y \leq x \leq y + D'' - 1 \leq y + |P(y)| - 1$, such that $z \equiv x \mod D''$. It follows that $P(z) = P(x) \mod D''$.

Since D'' divides $P(x)$, it must also divide $P(z)$. Thus $D' = D''$, as claimed.

We next note that because $c > 0$, $P(X)$ goes to infinity as X does. Therefore, with $y \geq \alpha$ sufficiently large, we have $P(x) > 0$ for $x \geq y$. Thus $\{x \mid y \leq x \leq y + |P(y)| - 1\} \subseteq S$.

That tells us D divides $D'' = D'$. As it is obvious that D' divides D, we see that $D = D' = \text{GCD}\{P(z) \mid z \text{ is an integer}\}$, as desired.

We also note that the argument in the second paragraph of this remark gives a way of actually constructing D for a given $P(X)$.
Example: Let \(P(X) = X^2 - X \). We easily see that \(D = 2 \). However, the greatest common divisor of the coefficients of \(P(X) \) is 1. We therefore see that while the GCD of the coefficients of \(P(X) \) clearly is a divisor of \(D \), it might not equal \(D \).

Notation: For \(f > 0 \), let \(\mathcal{P}(f) = \{ k \mid k \text{ is the sum of } f \text{ or fewer numbers of the form } P(x) \text{ with } x \in S \} \).

Obviously every number in \(\mathcal{P}(f) \) is a multiple of \(D \). Equally obviously, \(\mathcal{P}(1) \subseteq \mathcal{P}(2) \subseteq \mathcal{P}(3) \subseteq \cdots \). Our goal is to show that sequence eventually stabilizes to a set we will call \(\mathcal{P} \), and that there is an integer \(H \) such that \(\{ mD \mid m \geq H \} \subseteq \mathcal{P} \). (The interested reader will be able to see that the only influence \(\alpha \) has concerns the size of \(H \) and how quickly the above sequence stabilizes.)

Suppose we can find an \(f \) such that there is an \(H \) with \(\{ mD \mid m \geq H \} \subseteq \mathcal{P}(f) \).

If \(f' > f \) and \(\mathcal{P}(f') \neq \mathcal{P}(f) \), then the numbers in \(\mathcal{P}(f') \) but not in \(\mathcal{P}(f) \) must all have the form \(mD \) with \(1 \leq m < H \). Since there are only finitely many such \(mD \), we see that our sequence \(\mathcal{P}(1) \subseteq \mathcal{P}(2) \subseteq \mathcal{P}(3) \subseteq \cdots \subseteq \mathcal{P}(f) \subseteq \mathcal{P}(f+1) \subseteq \cdots \) will stabilize within a finite number of steps, showing \(\mathcal{P} \) exists, and completing the argument.

The rest of this work will be dedicated to showing there is an \(f \) and \(H \) with \(\{ mD \mid m \geq H \} \subseteq \mathcal{P}(f) \).

Recall that we have \(D = \text{GCD}(d_1, \ldots, d_i) \), with \(d_i = P(x_i) \) and with \(x_i \in S \).
The next lemma is rather well known.

Lemma 1: There is an \(H\) such that for all \(m \geq H\), \(mD\) has the form
\[m_1d_1 + \ldots + m_t d_t,\] with each \(m_i \geq 1\).

Proof: We will say that a linear combination \(m_1d_1 + \ldots + m_t d_t\) is ‘acceptable’ if each \(m_i\) is positive. We first do the case that \(D = 1\). There are integers \(u_1, \ldots, u_t\) with
\[u_1d_1 + \ldots + ud_t = 1.\] For \(1 \leq i \leq t\), let \(s_i\) and \(q_i\) be positive integers with \(s_i - q_i = u_i\).
We see that if \(k = q_id_1 + \ldots + q_id_t\), then \(s_id_1 + \ldots + s_id_t = k + 1\). Thus, \(k\) and \(k + 1\) have both been expressed as acceptable linear combinations. It is now clear that \(k + k, k + (k + 1), \) and \((k + 1) + (k + 1)\) can be expressed as acceptable linear combinations.
Thus \(2k, 2k + 1, \) and \(2k + 2\) have been expressed as acceptable linear combinations.
In the same manner, we see that \(2k + 2k = 4k, 4k + 1, 4k + 2, 4k + 3, \) and \(4k + 4 = (2k + 2) + (2k + 2)\) can all be expressed as acceptable linear combinations. Iterating, we eventually reach a list of \(d_1\) consecutive integers, each of which can be expressed as an acceptable linear combination. Call them \(H + j\) for \(0 \leq j \leq d_1 - 1\). If \(m \geq H\), then for some \(j\) \((0 \leq j \leq d_1 - 1)\), we have \(m = (H + j) + bd_1\) for some \(b \geq 0\). That form makes it clear that \(m = mD\) can be expressed as an acceptable linear combination.

In the general case, since \(\text{GCD}(d_1/D, \ldots, d_t/D) = 1\), we have just seen that for some \(H\), every \(m \geq H\) can be written as
\[m = m_1(d_1/D) + \ldots + m_t(d_t/D),\] with each \(m_i > 0\). Multiplying by \(D\) gives the desired result.
We reach a crucial point. We will now state a proposition, give a corollary to it, then use it to reach our desired goal, before finally turning to its elaborate proof.

Proposition 2: Let \(z \in S \). Then there is an \(f \) such that for all \(m \geq 1 \), \(mP(z) \) is the sum of \(f \) or fewer numbers of the form \(P(x) \) with \(x \in S \). (The proof will also show we can choose the \(P(x) \) to be multiples of \(P(z) \), a fact we do not need.)

Corollary 3: If there is an \(z \in S \) with \(P(z) = 1 \), then there is an \(f \) such that all positive integers are the sum of \(f \) or fewer numbers of the form \(P(x) \) with \(x \in S \) (so that \(P(x) > 0 \)).

Proof: Immediate from proposition 2.

Theorem 4: With notation as above, the sequence \(P(1) \subseteq P(2) \subseteq P(3) \subseteq \cdots \) eventually stabilizes to a set \(P \). Also, there is an integer \(H \) such that \(\{mD \mid m \geq H\} \subseteq P \).

Remark: We will use proposition 2 to prove the theorem 4. Conversely, if theorem 4 is true, proposition 2 must also be true. To see that, assume that \(P \) exists and equals \(P(f) \). Note that \(mP(y) \in P(m) \subseteq P = P(f) \), and so \(mp(y) \) is the sum of \(f \) or fewer numbers of the form \(P(x) \) with \(x \in S \).

Proof of theorem 4: We earlier pointed out that we only need to find an \(f \) and \(H \) such that \(\{mD \mid m \geq H\} \subseteq P(f) \). By lemma 1, there is an \(H \) such that for all \(m \geq H \), \(mD \) has the form
m_1d_1 + \ldots + m_td_t, with each m_i \geq 1. Recalling that d_i = P(x_i), we let z = x_i \in S in proposition 2, and learn that there is an f_i such that each m_id_i is the sum of f_i or fewer numbers of the form P(x) with x \in S. Letting f = f_1 + f_2 + \ldots + f_t, we see that for all m \geq H, mD is the sum of f or fewer numbers of the form P(x) with x \in S. Thus, \{mD \mid m \geq H\} \subseteq \mathcal{P}(f), and we are done.

Remark: Of course, the case D = 1 is of special interest, since it says there is an f such that any m \geq H is the sum of f or fewer numbers of the form P(x) with x \in S. Corollary 3 already covered the most special case, in which D clearly is 1.

SECTION 2: PROVING PROPOSITION 2.

In this section, we will prove proposition 2, modulo two facts. We will give a reference for the first of those facts, but the second fact will be proved in sections 3 through 7.

We now explain the two facts. First, we let B be an infinite subset of the non-negative integers, assuming 0 is in B. For N \geq 1 an integer, we let B(N) be the number of positive integers in B which are equal to or less than N. We define the Schnirelmann density of B to be GLB\{B(N)/N \mid N \geq 1\}. For an integer h \geq 1, we let hB = \{m \mid m \text{ is the sum of } h \text{ numbers in } B\}. (Notice that 0 \in B implies B \subseteq hB.)

Schnirelmann’s theorem: If the density of B is positive, then there is an h such that hB = \{m \mid m \geq 0\}.
A proof of Schnirelmann’s theorem can be found in chapter 2 of [K]. The argument is simple and elegant. (That chapter also contains a result whose proof is elaborate, but which we do not need.)

The second fact we need is a fundamental lemma due to Linnik. Its proof appears in chapter 3 of [K]. However, despite the many virtues of that highly recommended little book, the presentation of the fundamental lemma is perhaps not quite as clear as it might be. In sections 3 through 7, we rewrite the proof of the fundamental lemma. In this section, we state and use it.

Notation: For integers $N \geq 1$, $g \geq 1$, and m, let $r_{PNg}(m)$ equal the number of (x_1, \ldots, x_g) with each x_i an integer with $|x_i| \leq N$, and such that $P(x_1) + \cdots + P(x_g) = m$.

Fundamental lemma: Given $P(X)$, there is a $g > n$ (depending solely on the degree n of $P(X)$), and a constant K (depending on the coefficients of $P(X)$) such that for any integers m and $N \geq 1$, $r_{PNg}(m) \leq KN^{g-n}$.

We are ready to prove proposition 2 in section 1.

Proof of proposition 2: Suppose $z \in S$, and let $d = P(z) \geq 1$. Our goal is to show that for some f, for all $m \geq 1$, md is a sum of f or fewer numbers of the form $P(x)$ with $x \in S$.

Let $A = \{0\} \cup \{P(x)/d \mid x \in S \text{ and } d \text{ divides } P(x)\}$. Any $z'' \equiv z \mod d$ has $p(z'')$ a multiple of d, and so since the leading coefficient of $P(X)$ is positive (so that $P(z'')$ goes to infinity as z'' does), we see that A is an infinite set of non-negative numbers that contains 0. Thus, it is the type of set
dealt with by Schnirelmann’s work. With g as in the fundamental lemma, we let $B = gA$, and will show that the Schnirelmann density of B is positive. Therefore, by Schnirelmann’s theorem, there is an h such that $hgA = hB = \{m \mid m \geq 0\}$. Letting $f = hg$, we see that any $m \geq 1$ can be written as the sum of f numbers from A. Now the nonzero numbers in A have the form $P(x)/d$ with $x \in S$ and d dividing $P(x)$. Thus, $m \geq 1$ is the sum of f or fewer numbers of the form $P(x)/d$ with the $x \in S$ and with d dividing $P(x)$. That is equivalent to the goal stated above. (We also see the unneeded fact that the $P(x)$ can be chosen to be multiples of $d = P(z)$.)

Let $B = gA$. We must show there is a positive lower bound to the set $B(N)/N$, where $N \geq 1$ is an integer and $B(N)$ is the number of positive integers in B that are equal to or less than N.

We will now consider an integer $M \geq 1$, subject to two constraints concerning how large it must be. (There is will be no upper bound to its size.) Since the leading coefficient c of $P(X)$ is positive, $P(X)$ eventually becomes strictly monotonically increasing, and goes to infinity as X does. Therefore we can pick M such that for any $M' \geq M$, we have $P(x) \leq P(M')$ for $0 \leq x \leq M'$. Also, since $P(X)$ asymptotically approaches cX^n as X goes to infinity, we may assume M is large enough that for $M' \geq M$, $P(M') \leq 2cM'^n$. Taking these two constraints together, we see that for any $M' \geq M$ and any x with $0 \leq x \leq M'$, we have $P(x) \leq 2cM'^n$. Notice that any integer larger than M also satisfies this condition.

We next fix an integer $z' = z \mod d$. If the set $\{u \geq \alpha \mid u \not\in S\} = \{u \geq \alpha \mid P(u) < 0\}$ is empty, we insist that $z' \geq \max\{\alpha, 0\}$. However, if that set is non-empty, it clearly contains a maximal integer. In that case, we insist that both $z' \geq \max\{\alpha, 0\}$ and $z' > \max\{u \geq \alpha \mid u \not\in S\}$.
(We will write as if that set is non-empty. In the following, simply ignore any reference to it in the case that it is empty.)

Claim: With g and K as in the fundamental lemma, let $C = 2gc(z' + d)^a$, and $C' = \frac{1}{K(z' + d)^{t-n}}$. Then $B(CM^n) \geq C'M^n$.

Let $T = \{(x_1, ..., x_g) | \text{for } 1 \leq i \leq g, \text{ we have } x_i \in S, z' \leq x_i \leq z' + d(M - 1), \text{ and } d \text{ divides } P(x_i)\}$. Also let $T' = \{m | P(x_1)/d + ... + P(x_g)/d = m, \text{ for some } (x_1, ..., x_g) \text{ in } T\}$. Notice that the definitions of A, T and T' make it clear that $T' \subseteq gA = B$. Also notice that the definition of S implies that if $m \in T'$, then $m > 0$. Our plan is to show that every $m \in T'$ has $1 \leq m \leq CM^n$. That will show $B(CM^n) \geq |T'|$. We will also show $|T'| \geq C'M^n$. Together, those facts prove the claim.

We now turn to the details, beginning by showing $m \in T'$ implies $1 \leq m \leq CM^n$, the lower bound having already been noted. For $(x_1, ..., x_g)$ in T, and for $1 \leq i \leq g$, we have $0 \leq z' \leq x_i \leq z' + d(M - 1) \leq z'M + dM = (z' + d)M$. Since $d \geq 1$ and $z' \geq 0$, we have $(z' + d)M \geq M$. The choice of M shows that $P(x_i) \leq 2c((z' + d)M)^n$. Thus, for $(x_1, ..., x_g)$ in T, we have $P(x_1) + ... + P(x_g) \leq 2gc(z' + d)^aM^n = CM^n$. Therefore, if $m \in T'$, then $1 < m \leq CM^n$, as desired. We now know $B(CM^n) \geq |T'|$.

It remains to show that $|T'| \geq C'M^n$, which is a bit harder. We will do that by first finding upper and lower bounds for $|T|$, beginning with the lower bound. Let
T'' = \{(x_1, \ldots, x_g) | \text{for } 1 \leq i \leq g, \text{ we have } z' \leq x_i \leq z' + d(M - 1) \text{ and } x_i \equiv z' \mod d\}. \text{ We will show that } T'' \subseteq T. \text{ Consider some component } x_i \text{ of some } (x_1, \ldots, x_g) \text{ in } T''. \text{ We need to show that each } x_i \in S \text{ and that } d \text{ divides } P(x_i). \text{ Our first need is satisfied by the fact that } x_i \geq z' \geq \alpha \text{ and } x_i \geq z' > \max\{u \geq \alpha | u \notin S\}. \text{ Our second need is satisfied by the fact that } x_i \equiv z' \equiv z \mod d \text{ implies } P(x_i) = P(z) \mod d, \text{ and } P(z) = d. \text{ Thus } T'' \subseteq T. \text{ Now there are } M \text{ choices of } x_i \text{ with } z' \leq x_i \leq z' + d(M - 1) \text{ satisfying } x_i \equiv z' \mod d. \text{ Therefore } |T| \geq |T''| = M^g. \text{ That is our lower bound on } |T|.

For } m \text{ in } T', \text{ let } R(m) \text{ be the number of } (x_1, \ldots, x_g) \text{ in } T \text{ with } P(x_1)/d + \ldots + P(x_g)/d = m. \text{ Obviously } |T| = \sum_{m \in T'} R(m).

Let } (x_1, \ldots, x_g) \text{ be in } T. \text{ We previously saw that for } 1 \leq i \leq g, \text{ we have } 0 \leq x_i \leq (z' + d)M. \text{ Since } P(x_1)/d + \ldots + P(x_g)/d = m \in T \text{ implies } P(x_1) + \ldots + P(x_g) = md, \text{ the definition of } r_{PNg}(md) \text{ with } N = (z' + d)M \text{ shows that for } m \in T, R(m) \leq r_{P((z'+d)M)g}(md). \text{ By the fundamental lemma, we have } R(m) \leq K(z' + d)^g M^{g-n}. \text{ It follows from the conclusion of the previous paragraph that } |T| \leq |T'||K(z' + d)^g M^{g-n}. \text{ That is our upper bound for } |T|. \text{ Comparing our upper and lower bounds for } |T|, \text{ we see that } |T'| \geq \frac{M^g}{K(z' + d)^{g-n} M^{g-n}} = C'M^n, \text{ completing the proof of the claim.}

We now turn to showing that GLB\{B(N)/N | N \geq 1\} \text{ is positive. Consider the smallest integer } M_0 \geq 1 \text{ satisfying the constraints imposed on our integer } M. \text{ Suppose } N < CM_0^n. \text{ By hypothesis, we have } 1 = P(z)/d \in A \subseteq B. \text{ Thus } B(N)/N \geq 1/N > \frac{1}{CM_0^n}.\text{ \hfill \qed}
Now suppose $C M_0^n \leq N$. Any integer $M \geq M_0$ also satisfies those constraints, and so we may assume M has been chosen with $C M^n \leq N < C(M + 1)^n$.

We have $B(N)/N \geq B(CM^n)/N > B(CM^n)/C(M + 1)^n$. By the claim, we get

$$B(N)/N > \frac{C'M^n}{C(M + 1)^n} = \left(\frac{C'}{C}\right) \left(\frac{M}{M + 1}\right)^n.$$

Since $M \geq 1$, we have $\left(\frac{M}{M + 1}\right)^n \geq (1/2)^n$, so that

$$B(N)/N > \frac{C'}{2^n C}.$$

Combining the two cases, we see that $B(N)/N > \min\left\{\frac{1}{CM_0^n}, \frac{C'}{2^n C}\right\} > 0$, and we are done.