More Exotic Options

1. Barrier Options
2. Compound Options
3. Gap Options
More Exotic Options

1 Barrier Options

2 Compound Options

3 Gap Options
Definition; Some types

- The payoff of a Barrier option is path dependent
- More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are:
 - down-and-out: has to fall to reach the barrier
 - up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are:
 - down-and-in: has to fall to reach the barrier
 - up-and-in: has to rise to reach the barrier
- Some examples of situations when Asian options are useful are:
- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option
Definition; Some types

- The payoff of a Barrier option is path dependent.
- More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices.

Knock-out options go out of existence if the asset price reaches the barrier; the variants are:
- \(\downarrow\) down-and-out: has to fall to reach the barrier
- \(\uparrow\) up-and-out: has to rise to reach the barrier

Knock-in options come into existence if the asset price reaches the barrier; the variants are:
- \(\downarrow\) down-and-in: has to fall to reach the barrier
- \(\uparrow\) up-and-in: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:
- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option.
Definition; Some types

- The payoff of a Barrier option is path dependent.
- More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices.
- Knock-out options go out of existence if the asset price reaches the barrier; the variants are:
 - down-and-out: has to fall to reach the barrier
 - up-and-out: has to rise to reach the barrier
- Knock-in options come into existence if the asset price reaches the barrier; the variants are:
 - down-and-in: has to fall to reach the barrier
 - up-and-in: has to rise to reach the barrier
- Some examples of situations when Asian options are useful are:
- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option.
Definition; Some types

- The payoff of a Barrier option is **path dependent**
- More precisely, the payoff depends on whether over the option life the underlying price reaches the **barrier**; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices
- **Knock-out options** go **out of** existence if the asset price reaches the barrier; the variants are
 - **down-and-out**: has to fall to reach the barrier
 - **up-and-out**: has to rise to reach the barrier
- **Knock-in options** come **into** existence if the asset price reaches the barrier; the variants are
 - **down-and-in**: has to fall to reach the barrier
 - **up-and-in**: has to rise to reach the barrier
- Some examples of situations when Asian options are useful are:
- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option
Definition; Some types

• The payoff of a Barrier option is path dependent

• More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices

• Knock-out options go out of existence if the asset price reaches the barrier; the variants are
 ↓ down-and-out: has to fall to reach the barrier
 ↑ up-and-out: has to rise to reach the barrier

• Knock-in options come into existence if the asset price reaches the barrier; the variants are
 ↓ down-and-in: has to fall to reach the barrier
 ↑ up-and-in: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:

• Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option
Definition; Some types

• The payoff of a Barrier option is path dependent
• More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices
• Knock-out options go out of existence if the asset price reaches the barrier; the variants are
down-and-out: has to fall to reach the barrier
up-and-out: has to rise to reach the barrier
• Knock-in options come into existence if the asset price reaches the barrier; the variants are
down-and-in: has to fall to reach the barrier
up-and-in: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:
• Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option
Definition; Some types

- The payoff of a Barrier option is path dependent.
- More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices.
- **Knock-out options** go out of existence if the asset price reaches the barrier; the variants are:
 - down-and-out: has to fall to reach the barrier
 - up-and-out: has to rise to reach the barrier
- **Knock-in options** come into existence if the asset price reaches the barrier; the variants are:
 - down-and-in: has to fall to reach the barrier
 - up-and-in: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:

- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option.
Definition; Some types

- The payoff of a Barrier option is **path dependent**
- More precisely, the payoff depends on whether over the option life the underlying price reaches the **barrier**; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices
- **Knock-out options** go **out of** existence if the asset price reaches the barrier; the variants are
 - **down-and-out**: has to fall to reach the barrier
 - **up-and-out**: has to rise to reach the barrier
- **Knock-in options** come **into** existence if the asset price reaches the barrier; the variants are
 - **down-and-in**: has to fall to reach the barrier
 - **up-and-in**: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:
- Not that a “sum” of a knock-in and a knock-out option is equivalent to the “ordinary” option
Definition; Some types

• The payoff of a Barrier option is path dependent

• More precisely, the payoff depends on whether over the option life the underlying price reaches the barrier; note that this is a simplistic view of things - the stock prices are observed at discrete times and the wording above implies continuous observation of stock prices

• Knock-out options go out of existence if the asset price reaches the barrier; the variants are
 ↓ down-and-out: has to fall to reach the barrier
 ↑ up-and-out: has to rise to reach the barrier

• Knock-in options come into existence if the asset price reaches the barrier; the variants are
 ↓ down-and-in: has to fall to reach the barrier
 ↑ up-and-in: has to rise to reach the barrier

Some examples of situations when Asian options are useful are:

• Not that a "sum" of a knock-in and a knock-out option is equivalent to the "ordinary" option
Rebate options

- **Rebate options** make a fixed payment if the asset price reaches the barrier; we have
 - ↓ down rebates: has to fall to reach the barrier
 - ↑ up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out
Rebate options

• **Rebate options** make a fixed payment if the asset price reaches the barrier; we have

 ↓ down rebates: has to fall to reach the barrier

 ↑ up rebates: has to rise to reach the barrier

• More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out
Rebate options

- **Rebate options** make a fixed payment if the asset price reaches the barrier; we have
 - ↓ down rebates: has to fall to reach the barrier
 - ↑ up rebates: has to rise to reach the barrier
- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out
Rebate options

- **Rebate options** make a fixed payment if the asset price reaches the barrier; we have
 - \downarrow down rebates: has to fall to reach the barrier
 - \uparrow up rebates: has to rise to reach the barrier

- More complex barrier options require the asset price to not only cross a barrier, but spend a certain amount of time across the barrier in order to knock in or knock out
Up-and-Out Call

- Let us spend some time studying a particular barrier option - the analysis of the other options would be analogous
- Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) \, dt + \sigma S(t) \, d\tilde{W}(t),$$

where \tilde{W} is a standard Brownian motion under the risk-neutral measure \tilde{P}
- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, $K < B$)
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \tilde{W}(t)+(r-\frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

where we introduced the stochastic process

$$\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)t + \tilde{W}(t)$$
Up-and-Out Call

• Let us spend some time studying a particular barrier option - the analysis of the other options would be analogous.
• Assume that the underlying risky asset S is a geometric Brownian motion:

$$dS(t) = rS(t)\, dt + \sigma S(t)\, d\tilde{W}(t),$$

where \tilde{W} is a standard Brownian motion under the risk-neutral measure \tilde{P}.

• Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, $K < B$).
• As we have seen before, the closed form for the solution of the above SDE for the asset price S is:

$$S(t) = S(0)e^{\sigma \hat{W}(t) + (r - \frac{1}{2} \sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

where we introduced the stochastic process:

$$\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2} \sigma^2)t + \tilde{W}(t)$$
Up-and-Out Call

- Let us spend some time studying a particular barrier option - the analysis of the other options would be analogous.
- Assume that the underlying risky asset S is a geometric Brownian motion

$$dS(t) = rS(t) \, dt + \sigma S(t) \, d\tilde{W}(t),$$

where \tilde{W} is a standard Brownian motion under the risk-neutral measure \tilde{P}.
- Consider a European call, expiring at time T with strike price K and up-and-out barrier B (of course, $K < B$).
- As we have seen before, the closed form for the solution of the above SDE for the asset price S is

$$S(t) = S(0)e^{\sigma \hat{W}(t)+(r-\frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}$$

where we introduced the stochastic process

$$\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)t + \tilde{W}(t)$$
Up-and-Out Call

• Let us spend some time studying a particular barrier option - the analysis of the other options would be analogous
• Assume that the underlying risky asset \(S \) is a geometric Brownian motion

\[
dS(t) = rS(t)\,dt + \sigma S(t)\,d\tilde{W}(t),
\]

where \(\tilde{W} \) is a standard Brownian motion under the risk-neutral measure \(\tilde{P} \)

• Consider a European call, expiring at time \(T \) with strike price \(K \) and up-and-out barrier \(B \) (of course, \(K < B \))
• As we have seen before, the closed form for the solution of the above SDE for the asset price \(S \) is

\[
S(t) = S(0)e^{\sigma \hat{W}(t)+(r-\frac{1}{2}\sigma^2)t} = S(0)e^{\sigma \hat{W}(t)}
\]

where we introduced the stochastic process

\[
\hat{W}(t) = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)t + \tilde{W}(t)
\]
Up-and-Out Call: On the maximum of S

- Define

$$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that

$$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless

- If

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

then the payoff is

$$(S(T) - K)^+ = (S(0)e^{\sigma \hat{W}(T)} - K)^+$$
Up-and-Out Call: On the maximum of S

- Define

$$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that

$$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless

- If

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

then the payoff is

$$(S(T) - K)^+ = (S(0)e^{\sigma \hat{W}(T)} - K)^+$$
Up-and-Out Call: On the maximum of S

- Define
 $$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that
 $$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if
 $$S(0) e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless
- If
 $$S(0) e^{\sigma \hat{M}(T)} \leq B$$
 then the payoff is
 $$(S(T) - K)^+ = (S(0) e^{\sigma \hat{W}(T)} - K)^+$$
Up-and-Out Call:
On the maximum of S

- Define

$$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that

$$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if

$$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless

 - If

$$S(0)e^{\sigma \hat{M}(T)} \leq B$$

 then the payoff is

$$\left(S(T) - K \right)^+ = \left(S(0)e^{\sigma \hat{W}(T)} - K \right)^+$$
Up-and-Out Call: On the maximum of S

- Define

 $$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that

 $$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if

 $$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless
- If

 $$S(0)e^{\sigma \hat{M}(T)} \leq B$$

then the payoff is

$$(S(T) - K)^+ = (S(0)e^{\sigma \hat{W}(T)} - K)^+$$
Up-and-Out Call: On the maximum of S

- Define
 $$\hat{M}_T = \max_{0 \leq t \leq T} \hat{W}(t)$$

- Then, we have that
 $$\max_{0 \leq t \leq T} S(t) = e^{\sigma \hat{M}(T)}$$

- The option kicks out if and only if
 $$S(0)e^{\sigma \hat{M}(T)} > B$$

- If the above happens - the option is rendered worthless
- If
 $$S(0)e^{\sigma \hat{M}(T)} \leq B$$

then the payoff is
 $$(S(T) - K)^+ = (S(0)e^{\sigma \hat{W}(T)} - K)^+$$
Up-and-Out Call: The payoff

- Altogether, when we combine the above two cases, the payoff of the option is

\[V(T) = (S(0)e^{\sigma \hat{W}(t)} - K)^+ \mathbb{I}_{\{S(0)e^{\sigma \hat{M}(t)} \leq B\}} \]

\[= (S(0)e^{\sigma \hat{W}(t)} - K) \mathbb{I}_{\{S(0)e^{\sigma \hat{W}(t)} \geq K, S(0)e^{\sigma \hat{M}(t)} \leq B\}} \]

\[= (S(0)e^{\sigma \hat{W}(t)} - K) \mathbb{I}_{\{\hat{W}(T) \geq k, \hat{M}(T) \leq b\}} \]

where

\[k = \frac{1}{\sigma} \ln \left(\frac{K}{S(0)} \right); \]

\[b = \frac{1}{\sigma} \ln \left(\frac{B}{S(0)} \right) \]

- The fact that we know explicitly the formula for the joint density of a Brownian motion and its maximum helps us in the valuation procedure
Up-and-Out Call: The payoff

- Altogether, when we combine the above two cases, the payoff of the option is

\[V(T) = (S(0)e^{\sigma \hat{W}(t)} - K)^+ \mathbb{I}\{S(0)e^{\sigma \hat{M}(T)} \leq B\} \]

\[= (S(0)e^{\sigma \hat{W}(t)} - K) \mathbb{I}\{S(0)e^{\sigma \hat{W}(t)} \geq K, S(0)e^{\sigma \hat{M}(T)} \leq B\} \]

\[= (S(0)e^{\sigma \hat{W}(t)} - K) \mathbb{I}\{\hat{W}(T) \geq k, \hat{M}(T) \leq b\} \]

where

\[k = \frac{1}{\sigma} \ln \left(\frac{K}{S(0)} \right); \]

\[b = \frac{1}{\sigma} \ln \left(\frac{B}{S(0)} \right) \]

- The fact that we know explicitly the formula for the joint density of a Brownian motion and its maximum helps us in the valuation procedure.
The Valuation

- In general, barrier options are “cheaper” than the otherwise identical “ordinary” options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long - but it contains only N as a special function
- In fact, the up-and-out option’s price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat
The Valuation

- In general, barrier options are “cheaper” than the otherwise identical “ordinary” options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
 - The formula for the price is quite long - but it contains only N as a special function
 - In fact, the up-and-out option’s price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat
In general, barrier options are “cheaper” than the otherwise identical “ordinary” options.

Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting.

The formula for the price is quite long - but it contains only N as a special function.

In fact, the up-and-out option’s price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat.
The Valuation

- In general, barrier options are “cheaper” than the otherwise identical “ordinary” options
- Under some minor assumptions, it is possible to find the price of the barrier options in the Black-Scholes setting
- The formula for the price is quite long - but it contains only N as a special function
- In fact, the up-and-out option’s price satisfies the Black-Scholes-Merton partial differential equation (as the price for the ordinary European call) - it is the boundary conditions that are different (they have to account for the barrier) and they complicate matters somewhat
More Exotic Options

1. Barrier Options

2. Compound Options

3. Gap Options
The Set-up

• A compound option is an option to buy an option

• Let us draw a timeline

• Consider a call on a call option, i.e., an option to buy a call option with maturity \(T \) and strike price \(K \) at some exercise time \(T_1 < T \), for some strike price \(K_1 \)

• This call on a call should be exercise at time \(T_1 \) only if the strike price \(K_1 \) is lower than the price of the underlying call option at time \(T_1 \)

• So, the payoff of this option at time \(T_1 \) is

\[
(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+
\]

where \(C(T_1) = C(S(T_1), K, T - T_1) \) is the current price of the underlying call option
The Set-up

- A **compound option** is an option to buy an option
- Let us draw a timeline
 - Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
 - This call on a call should be exercised at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
 - So, the payoff of this option at time T_1 is

\[
(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+
\]

where $C(T_1) = C(S(T_1), K, T - T_1)$ is the current price of the underlying call option
The Set-up

- A **compound option** is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

$$(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+$$

where $C(T_1) = C(S(T_1), K, T - T_1)$ is the current price of the underlying call option
The Set-up

- A compound option is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

\[(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+\]

where $C(T_1) = C(S(T_1), K, T - T_1)$ is the current price of the underlying call option
The Set-up

- A **compound option** is an option to buy an option
- Let us draw a timeline
- Consider a call on a call option, i.e., an option to buy a call option with maturity T and strike price K at some exercise time $T_1 < T$, for some strike price K_1
- This call on a call should be exercise at time T_1 only if the strike price K_1 is lower than the price of the underlying call option at time T_1
- So, the payoff of this option at time T_1 is

\[
(C(T_1) - K_1)^+ = (C(S(T_1), K, T - T_1) - K_1)^+
\]

where $C(T_1) = C(S(T_1), K, T - T_1)$ is the current price of the underlying call option
The Pricing

- Assume the Black-Scholes-Merton setting and denote the price of the underlying call option at time T_1 by $C(T_1)$ - we know the formula for this value.

- Then the time 0 price of the call on a call option can be represented as

$$ \tilde{E}_0[e^{-rT_1}(C(T_1) - K_1)^+] $$

$$ = \tilde{E}_0[e^{-rT_1}(\tilde{E}_{T_1}[e^{-r(T-T_1)}(S(T) - K)^+] - K_1)^+] $$

$$ = \tilde{E}_0[e^{-rT}(S(T) - K)^+ - e^{-rT_1}K_1] \mathbb{I}_{\{C(T_1) \geq K_1\}} $$

where \tilde{E} denotes the expectation with respect to the risk-neutral probability \tilde{P}.
The Pricing

- Assume the Black-Scholes-Merton setting and denote the price of the underlying call option at time T_1 by $C(T_1)$ - we know the formula for this value.

- Then the time 0 price of the call on a call option can be represented as

$$
\tilde{E}_0[e^{-rT_1}(C(T_1) - K_1)^+]
= \tilde{E}_0[e^{-rT_1}(\tilde{E}_{T_1}[e^{-r(T-T_1)}(S(T) - K)^+] - K_1)^+]
= \tilde{E}_0[e^{-rT}(S(T) - K)^+ - e^{-rT_1}K_1]I_{\{C(T_1) \geq K_1\}}
$$

where \tilde{E} denotes the expectation with respect to the risk-neutral probability $\tilde{P}.$
Parity

- Let $CallOnCall$ denote the price of the compound call on an underlying call option with maturity T_1
- Let $PutOnCall$ denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let $Call$ denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$
Parity

- Let $CallOnCall$ denote the price of the compound call on an underlying call option with maturity T_1
- Let $PutOnCall$ denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
- Let $Call$ denote the price of the underlying call option
- Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$
Parity

- Let CallOnCall denote the price of the compound call on an underlying call option with maturity T_1.
- Let PutOnCall denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call).
- Let Call denote the price of the underlying call option.
- Then the parity for compound options reads as

$$\text{CallOnCall} - \text{PutOnCall} = \text{Call} - x^{-rT_1}$$
• Let $CallOnCall$ denote the price of the compound call on an underlying call option with maturity T_1
• Let $PutOnCall$ denote the price of the compound put on an underlying call option (the exact analogue of the above call-on-call)
• Let $Call$ denote the price of the underlying call option
• Then the parity for compound options reads as

$$CallOnCall - PutOnCall = Call - x^{-rT_1}$$
More Exotic Options

1. Barrier Options

2. Compound Options

3. Gap Options
A Gap Call

- A gap call option pays SK_1 when $S > K_2$
- There is a gap in the payoff diagram - hence the name of the option
- The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2)$$

where

$$d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln \left(\frac{S}{K_2} \right) + (r - \delta + \frac{1}{2} \sigma^2) T \right]$$

and $d_2 = d_1 - \sigma \sqrt{T}$
A Gap Call

- A gap call option pays SK_1 when $S > K_2$
- There is a gap in the payoff diagram - hence the name of the option
- The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-r T} N(d_2)$$

where

$$d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln \left(\frac{S}{K_2} \right) + (r - \delta + \frac{1}{2} \sigma^2) T \right]$$

and $d_2 = d_1 - \sigma \sqrt{T}$
A Gap Call

• A gap call option pays SK_1 when $S > K_2$
• There is a gap in the payoff diagram - hence the name of the option
• The Black-Scholes price of a gap call option is

$$C(S, K_1, K_2, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2)$$

where

$$d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln \left(\frac{S}{K_2} \right) + (r - \delta + \frac{1}{2} \sigma^2) T \right]$$

and $d_2 = d_1 - \sigma \sqrt{T}$