The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
What is interest?

- K ... the principal, i.e., the amount of money that the **borrower** borrows/lender lends at time $t = 0$
- S ... the amount of money that changes hands at a later time - say, T
- The interest is defined as

 $$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

- K...the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$
- S...the amount of money that changes hands at a later time - say, T
- The interest is defined as

$$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

- K...the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$
- S...the amount of money that changes hands at a later time - say, T
- The interest is defined as

\[S - K \geq 0 \]

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
What is interest?

• $K...$ the principal, i.e., the amount of money that the borrower borrows/lender lends at time $t = 0$
• $S...$ the amount of money that changes hands at a later time - say, T
• The interest is defined as

$$S - K \geq 0$$

Reading assignment: Section 1.2 in the textbook (on the rationale behind the existence of interest)
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The amount function

- Let us temporarily fix the principal K
 - $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
 - In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
 - Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
 - In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
 - In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The amount function

- Let us temporarily fix the principal K
- $A_K(t)$... the amount function for principal K, i.e., the balance at time $t \geq 0$ (time is always measured in some agreed upon units; think “years” for now)
 - In words: K invested at time $t = 0$ “grows” to $A_K(t)$ at time $t \geq 0$
- Note: $A_K(0) = K$
The accumulation function

- \(a(t) \) ... the accumulation function, i.e., the amount function if the principal \(K \) is one dollar
- Formally: If the principal is one dollar, we write

 \[a(t) = A_1(t) \]

- Note:

 \[a(0) = 1 \]
The accumulation function

- $a(t)$. . . the accumulation function, i.e., the amount function if the principal K is one dollar

- Formally: If the principal is one dollar, we write

$$a(t) = A_1(t)$$

- Note:

$$a(0) = 1$$
The accumulation function

- $a(t)$... the accumulation function, i.e., the amount function if the principal K is one dollar
- Formally: If the principal is one dollar, we write

$$a(t) = A_1(t)$$

- Note:

$$a(0) = 1$$
The relationship between the amount and the accumulation functions

- We expect to have that

\[A_K(t) = Ka(t) \]

- This is common, but is NOT always the case (the investment scheme may include a tiered growth structure).

- However, since the above equality holds in most cases, we will assume that it is true unless it is explicitly noted otherwise.
The relationship between the amount and the accumulation functions

- We expect to have that

\[A_K(t) = Ka(t) \]

- This is *common*, but is **NOT** always the case (the investment scheme may include a *tiered* growth structure).

- However, since the above equality holds in most cases, we will assume that it is true unless it is *explicitly* noted otherwise.
The relationship between the amount and the accumulation functions

- We expect to have that
 \[A_K(t) = Ka(t) \]

- This is common, but is **NOT** always the case (the investment scheme may include a *tiered* growth structure).

- However, since the above equality holds in most cases, we will assume that it is true unless it is *explicitly* noted otherwise.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both \(a \) and \(A_K \) increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 - continuous and linear;
 - discrete (end of the year, e.g.);
 - continuous and exponential.
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off).
- Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

• It is natural to assume that both \(a \) and \(A_K \) increase in the time variable.
• Such increase may be, for example:
 ◦ continuous and linear;
 ◦ discrete (end of the year, e.g.);
 ◦ continuous and exponential

• However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
• Assignment: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

- It is natural to assume that both a and A_K increase in the time variable.
- Such increase may be, for example:
 ◦ continuous and linear;
 ◦ discrete (end of the year, e.g.);
 ◦ continuous and exponential
- However, there are investment schemes in which it is possible to lose money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
- *Assignment*: Examples 1.3.2-4 in the textbook.
The increase/decrease of the amount and the accumulation functions

• It is natural to assume that both a and A_K increase in the time variable.
• Such increase may be, for example:
 ◦ continuous and linear;
 ◦ discrete (end of the year, e.g.);
 ◦ continuous and exponential
• However, there are investment schemes in which it is possible to **lose** money over time (e.g., if one invests in a fund that trades in the market or in a restaurant that takes time to pay off)
• **Assignment:** Examples 1.3.2-4 in the textbook.
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) \ldots the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) \ldots the effective interest rate for the interval \([t_1,t_2]\), i.e.,

\[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
\]

- If \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
\]

- The interval \([n-1,n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- Notation:

\[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}
\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)
\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let $t_2 > t_1 \geq 0$

- $A_K(t_2) - A_K(t_1)$... the amount of interest earned between time t_1 and time t_2
- $i_{[t_1,t_2]}$... the effective interest rate for the interval $[t_1, t_2]$, i.e.,

$$i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}$$

- IF $A_K(t) = Ka(t)$, then we also have

$$i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}$$

- The interval $[n - 1, n]$ is called the n^{th} time period (for n a positive integer)
- Notation:

$$i_n = i_{[n-1,n]} = \frac{a(n) - a(n - 1)}{a(n - 1)}$$

- Hence,

$$a(n) = a(n - 1)(1 + i_n)$$

and $i_1 = a(1) - 1$
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) ... the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) ... the effective interest rate for the interval \([t_1, t_2]\), i.e.,

\[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
\]

- **IF** \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
\]

- The interval \([n-1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**

\[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}
\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)
\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)
- \(A_K(t_2) - A_K(t_1) \) ... the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) ... the effective interest rate for the interval \([t_1, t_2]\), i.e.,

\[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}\]

- **IF** \(A_K(t) = Ka(t) \), then we also have

\[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}\]

- The interval \([n-1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**

\[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}\]

- Hence,

\[
a(n) = a(n-1)(1 + i_n)\]

and \(i_1 = a(1) - 1 \)
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) is the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) is the effective interest rate for the interval \([t_1,t_2]\), i.e.,
 \[
 i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}
 \]

- **IF** \(A_K(t) = Ka(t) \), then we also have
 \[
 i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}
 \]

- The interval \([n-1,n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
 - **Notation:**
 \[
 i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}
 \]
 - Hence,
 \[
 a(n) = a(n-1)(1 + i_n)
 \]
 and \(i_1 = a(1) - 1 \)
The effective interest rate

Let $t_2 > t_1 \geq 0$

- $A_K(t_2) - A_K(t_1)$... the amount of interest earned between time t_1 and time t_2
- $i_{[t_1,t_2]}$... the effective interest rate for the interval $[t_1, t_2]$, i.e.,

$$i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}$$

- IF $A_K(t) = Ka(t)$, then we also have

$$i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}$$

- The interval $[n-1, n]$ is called the n^{th} time period (for n a positive integer)
- Notation:

$$i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}$$

- Hence,

$$a(n) = a(n-1)(1 + i_n)$$

and $i_1 = a(1) - 1$
The effective interest rate

Let \(t_2 > t_1 \geq 0 \)

- \(A_K(t_2) - A_K(t_1) \) \ldots the amount of interest earned between time \(t_1 \) and time \(t_2 \)
- \(i_{[t_1,t_2]} \) \ldots the effective interest rate for the interval \([t_1, t_2]\), i.e.,
 \[
i_{[t_1,t_2]} = \frac{a(t_2) - a(t_1)}{a(t_1)}\]

- **IF** \(A_K(t) = Ka(t) \), then we also have
 \[
i_{[t_1,t_2]} = \frac{A_K(t_2) - A_K(t_1)}{A_K(t_1)}\]

- The interval \([n-1, n]\) is called the \(n^{th} \) time period (for \(n \) a positive integer)
- **Notation:**
 \[
i_n = i_{[n-1,n]} = \frac{a(n) - a(n-1)}{a(n-1)}\]

- Hence,
 \[
a(n) = a(n-1)(1 + i_n)\]

and \(i_1 = a(1) - 1 \)
The Growth of Money

1. Interest
2. Accumulation and amount functions
3. Simple Interest/Linear Accumulation Functions
4. Discount functions/The time value of money
5. Simple discount
In this case, a is assumed linear and, thus, must be of the form

$$a(t) = 1 + st$$

for a certain constant s

- s ... the simple interest rate
- Note: $s = i_1$
- $A_K(t) = K(1 + st)$... the amount function for K invested by simple interest at rate s
- $a(t) = 1 + st$... the simple interest accumulation function at rate s
- Let us look at an example ...
In this case, \(a \) is assumed linear and, thus, must be of the form

\[
a(t) = 1 + st
\]

for a certain constant \(s \)

- \(s \ldots \) the **simple interest rate**
- Note: \(s = i_1 \)
- \(A_K(t) = K(1 + st) \ldots \) the amount function for \(\$K \) invested by **simple interest** at rate \(s \)
- \(a(t) = 1 + st \ldots \) the simple interest accumulation function at rate \(s \)
- Let us look at an example \ldots
• In this case, \(a \) is assumed linear and, thus, must be of the form

\[
a(t) = 1 + st
\]

for a certain constant \(s \).
• \(s \) . . . the \textbf{simple interest rate}
• Note: \(s = i_1 \)
• \(A_K(t) = K(1 + st) \) . . . the \textbf{amount function} for \$\(K \) invested by \textbf{simple interest} at rate \(s \)
• \(a(t) = 1 + st \) . . . the \textbf{simple interest accumulation function} at rate \(s \)
• Let us look at an example . . .
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

 $$a(t) = 1 + st$$

 for a certain constant s

- s . . . the simple interest rate

- Note: $s = i_1$

- $A_K(t) = K(1 + st)$. . . the amount function for K invested by simple interest at rate s

- $a(t) = 1 + st$. . . the simple interest accumulation function at rate s

- Let us look at an example . . .
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form
 \[a(t) = 1 + st \]
 for a certain constant s
- s . . . the simple interest rate
- Note: $s = i_1$
- $A_K(t) = K(1 + st)$. . . the amount function for K invested by simple interest at rate s
- $a(t) = 1 + st$. . . the simple interest accumulation function at rate s
- Let us look at an example . . .
Linear $a(t)$

- In this case, a is assumed linear and, thus, must be of the form

 $$a(t) = 1 + st$$

 for a certain constant s

- $s \ldots$ the simple interest rate

- Note: $s = i_1$

- $A_K(t) = K(1 + st) \ldots$ the amount function for K invested by simple interest at rate s

- $a(t) = 1 + st \ldots$ the simple interest accumulation function at rate s

- Let us look at an example \ldots
In the simple interest case:

\[i_n = \frac{s}{1 + s(n-1)} \]

So, \(i_n \) is decreasing in \(n \) (see Example 1.4.2 in the textbook for an illustration of this fact).

Moreover,

\[i_n \to 0, \text{ as } n \to \infty \]

So, simple interest is not convenient for long duration loans.
On i_n

- In the simple interest case:

 $$i_n = \frac{s}{1 + s(n - 1)}$$

- So, i_n is **decreasing** in n (see Example 1.4.2 in the textbook for an illustration of this fact)

- Moreover,

 $$i_n \rightarrow 0, \text{ as } n \rightarrow \infty$$

- So, simple interest is not convenient for long duration loans.
On i_n

- In the simple interest case:

$$i_n = \frac{s}{1 + s(n - 1)}$$

- So, i_n is decreasing in n (see Example 1.4.2 in the textbook for an illustration of this fact).

- Moreover,

$$i_n \to 0, \text{ as } n \to \infty$$

- So, simple interest is not convenient for long duration loans.
On \(i_n \)

- In the simple interest case:

\[
i_n = \frac{s}{1 + s(n - 1)}
\]

- So, \(i_n \) is decreasing in \(n \) (see Example 1.4.2 in the textbook for an illustration of this fact)

- Moreover,

\[
i_n \to 0, \text{ as } n \to \infty
\]

- So, simple interest is not convenient for long duration loans.
Methods for measuring the time/length of the loan in years

• Exact simple interest aka "actual/actual"
 The loan term D expressed in days and divided by 365

• Ordinary simple interest aka "30/360"
 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

• The Banker's rule aka "actual/360"
 The loan term D expressed in (actual) days and then divided by 360
Methods for measuring the time/length of the loan in years

- **Exact simple interest aka ”actual/actual”**

 The loan term D expressed in days and divided by 365

- **Ordinary simple interest aka ”30/360”**

 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

- **The Banker’s rule aka ”actual/360”**

 The loan term D expressed in (actual) days and then divided by 360
Methods for measuring the time/length of the loan in years

- **Exact simple interest aka ”actual/actual”**

 The loan term D expressed in days and divided by 365

- **Ordinary simple interest aka ”30/360”**

 The loan term D expressed in days assuming that each month has 30 days and then divided by 360

- **The Banker’s rule aka ”actual/360”**

 The loan term D expressed in (actual) days and then divided by 360
The Growth of Money

1. Interest

2. Accumulation and amount functions

3. Simple Interest/Linear Accumulation Functions

4. Discount functions/The time value of money

5. Simple discount
The discount function

- $v(t)$...the **discount function**, i.e.,

$$v(t) = \frac{1}{a(t)}$$

- In words, $v(t)$ is the amount of money that one should **invest** at time 0 in order to have $1 at time t
- For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

- **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
- Let us draw the time line
- One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}$$

- **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
The discount function

- $v(t)$...the discount function, i.e.,

 $$v(t) = \frac{1}{a(t)}$$

- In words, $v(t)$ is the amount of money that one should **invest** at time 0 in order to have $1 at time t

- For example, in the simple interest case, we have that

 $$v(t) = \frac{1}{1 + st}$$

- **Question**: What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?

- Let us draw the time line

- One needs to invest (at time t_1)

 $$Sv(t_2)a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}$$

- **Assignment**: Examples 1.7.2, 1.7.3 in the textbook
The discount function

- $v(t)$...the discount function, i.e.,

$$v(t) = \frac{1}{a(t)}$$

- In words, $v(t)$ is the amount of money that one should invest at time 0 in order to have 1 at time t.
- For example, in the simple interest case, we have that

$$v(t) = \frac{1}{1 + st}$$

- Question: What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
- Let us draw the time line
- One needs to invest (at time t_1)

$$Sv(t_2)a(t_1) = \frac{a(t_1)}{a(t_2)} = \frac{v(t_2)}{v(t_1)}$$

- Assignment: Examples 1.7.2, 1.7.3 in the textbook.
The discount function

- \(v(t) \) is the discount function, i.e.,
 \[
 v(t) = \frac{1}{a(t)}
 \]
- In words, \(v(t) \) is the amount of money that one should **invest** at time 0 in order to have $1 at time \(t \).
- For example, in the simple interest case, we have that
 \[
 v(t) = \frac{1}{1 + st}
 \]
- **Question**: What if one wishes to invest a certain amount not at time 0 but at a later time \(t_1 > 0 \) - with the goal of earning S at a still later time \(t_2 \)?
 - Let us draw the time line
 - One needs to invest (at time \(t_1 \))
 \[
 S v(t_2) a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}
 \]
- **Assignment**: Examples 1.7.2, 1.7.3 in the textbook
The discount function

- $v(t)$ is the discount function, i.e.,

 $$v(t) = \frac{1}{a(t)}$$

- In words, $v(t)$ is the amount of money that one should invest at time 0 in order to have $1 at time t.
- For example, in the simple interest case, we have that

 $$v(t) = \frac{1}{1 + st}$$

- Question: What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ with the goal of earning S at a still later time t_2?
- Let us draw the time line
- One needs to invest (at time t_1)

 $$Sv(t_2)a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)}$$

Assignment: Examples 1.7.2, 1.7.3 in the textbook.
The discount function

- $v(t)$... the discount function, i.e.,
 \[v(t) = \frac{1}{a(t)} \]

- In words, $v(t)$ is the amount of money that one should **invest** at time 0 in order to have $1 at time t
- For example, in the simple interest case, we have that
 \[v(t) = \frac{1}{1 + st} \]

- **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time $t_1 > 0$ - with the goal of earning S at a still later time t_2?
- Let us draw the time line
- One needs to invest (at time t_1)
 \[S v(t_2) a(t_1) = S \frac{a(t_1)}{a(t_2)} = S \frac{v(t_2)}{v(t_1)} \]

- **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
The discount function

- \(v(t) \) ... the discount function, i.e.,

\[
 v(t) = \frac{1}{a(t)}
\]

- In words, \(v(t) \) is the amount of money that one should **invest** at time 0 in order to have $1 at time \(t \)
- For example, in the simple interest case, we have that

\[
 v(t) = \frac{1}{1 + st}
\]

- **Question:** What if one wishes to invest a certain amount not at time 0 but at a later time \(t_1 > 0 \) - with the goal of earning S at a still later time \(t_2 \)?
- Let us draw the time line
- One needs to invest (at time \(t_1 \))

\[
 Sv(t_2)a(t_1) = Sv(t_2)\frac{a(t_1)}{a(t_2)} = S\frac{v(t_2)}{v(t_1)}
\]

- **Assignment:** Examples 1.7.2, 1.7.3 in the textbook
Present Value

- $PV_{a(t)}(L \text{ at } t_0)$... present value with respect to $a(t)$ of L to be received at time t_0, i.e.,

$$PV_{a(t)}(L \text{ at } t_0) = L v(t_0)$$

if the growth is proportional to the invested amount

- Convention: If it is obvious which accumulation function $a(t)$ we use, we suppress it from the notation for the present value
Present Value

- $PV_{a(t)}(\$L \text{ at } t_0)$... present value with respect to $a(t)$ of $\$L$ to be received at time t_0, i.e.,

$$PV_{a(t)}(\$L \text{ at } t_0) = \$Lv(t_0)$$

if the growth is proportional to the invested amount

- Convention: If it is obvious which accumulation function $a(t)$ we use, we suppress it from the notation for the present value
The Growth of Money

1. Interest
2. Accumulation and amount functions
3. Simple Interest/Linear Accumulation Functions
4. Discount functions/The time value of money
5. Simple discount
Discount rate

- $D \ldots$ the **discount** per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must **pay immediately** D to the lender.

- Note that the “net-effect” for the borrower is that they get to use $(1 - D)$ at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender

- The value DK is called **the amount of discount**
Discount rate

- \(D \) … the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends $1 for one basic period at a discount rate \(D \) - this means that in order to obtain $1 at time 0, the borrower must pay immediately \(D \) to the lender.

- Note that the “net-effect” for the borrower is that they get to use

 \((1 - D) \)

 at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow $\(K \), one needs to pay $\(DK \) to the lender

- The value $\(DK \) is called the amount of discount
Discount rate

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends 1 for one basic period at a discount rate D - this means that in order to obtain 1 at time 0, the borrower must pay immediately D to the lender.

- Note that the “net-effect” for the borrower is that they get to use $(1 - D)$ at time zero.

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender.

- The value DK is called the amount of discount.
Discount rate

- \(D \) … the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

 If an investor (lender) lends $1 for one basic period at a discount rate \(D \) - this means that in order to obtain $1 at time 0, the borrower must **pay immediately** $D to the lender.

- Note that the “net-effect” for the borrower is that they get to use

\[$(1 - D) \]

at time zero

- The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow $K, one needs to pay $DK to the lender

- The value $DK is called the amount of discount
• D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e.,

If an investor (lender) lends $1 for one basic period at a discount rate D - this means that in order to obtain $1 at time 0, the borrower must **pay immediately** D to the lender.

• Note that the “net-effect” for the borrower is that they get to use

$$(1 - D)$$

at time zero

• The initial fee is proportional to the amount of money borrowed, i.e., if one wants to borrow K, one needs to pay DK to the lender

• The value DK is called the amount of discount
Simple discount

• D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

• Note that the discount function $v(t)$ is linear in this case

• **Caveat:** This situation is not the same as the one when the accumulation function is linear.
Simple discount

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

- Note that the discount function $v(t)$ is linear in this case.
- **Caveat:** This situation is **not** the same as the one when the accumulation function is linear.
Simple discount

- D ... the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

- Note that the discount function $v(t)$ is linear in this case

- **Caveat:** This situation is not the same as the one when the accumulation function is linear.
Simple discount

- D . . . the discount per unit time period, per dollar that the borrower and the lender agree upon at time 0, i.e., D is uniquely determined by

$$a(t) = \frac{1}{1 - tD}$$

or, equivalently

$$v(t) = 1 - tD$$

- Note that the discount function $v(t)$ is linear in this case
- **Caveat:** This situation is not the same as the one when the accumulation function is linear.
$A_K(t)$ and $a(t)$

- More vocabulary:

\[A_K(t) = \frac{K}{1 - dt} \]

is called the amount function for K invested by simple discount at a rate d

\[a(t) = \frac{1}{1 - dt} \]

is called the simple discount accumulation function at a rate d

- Let us draw their graphs

- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
$A_K(t)$ and $a(t)$

- More vocabulary:

\[A_K(t) = \frac{K}{1 - dt} \]

is called the amount function for K invested by simple discount at a rate d

\[a(t) = \frac{1}{1 - dt} \]

is called the simple discount accumulation function at a rate d

- Let us draw their graphs
- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
$A_K(t)$ and $a(t)$

- More vocabulary:

 \[A_K(t) = \frac{K}{1 - dt} \]

 is called the amount function for K invested by simple discount at a rate d

 \[a(t) = \frac{1}{1 - dt} \]

 is called the simple discount accumulation function at a rate d

- Let us draw their graphs

- Note that it only makes sense to talk about loan terms that are shorter than $1/d$
More vocabulary:

\[A_K(t) = \frac{K}{1 - dt} \]

is called the amount function for K invested by simple discount at a rate d

\[a(t) = \frac{1}{1 - dt} \]

is called the simple discount accumulation function at a rate d

Let us draw their graphs

Note that it only makes sense to talk about loan terms that are shorter than $1/d$