Annuities Governed by general accumulation functions

Review

- Let $a(t)$ denote the accumulation function which governs an annuity and let $v(t)$ denote the discount function, i.e., $v(t)=1 / a(t)$

Review

- Let $a(t)$ denote the accumulation function which governs an annuity and let $v(t)$ denote the discount function, i.e., $v(t)=1 / a(t)$
- Then, in general

$$
\begin{aligned}
& a_{\boldsymbol{m}}=v(1)+v(2)+\cdots+v(n) \\
& \ddot{a}_{\boldsymbol{B}}=1+v(1)+v(2)+\cdots+v(n-1)
\end{aligned}
$$

- Multiplying the expressions for the values at issuance of the annuities above by $a(n)$, we obtain the expressions for their accumulated values at closing

Review

- Let $a(t)$ denote the accumulation function which governs an annuity and let $v(t)$ denote the discount function, i.e., $v(t)=1 / a(t)$
- Then, in general

$$
\begin{aligned}
& a_{\boldsymbol{m}}=v(1)+v(2)+\cdots+v(n) \\
& \ddot{a}_{\boldsymbol{B}}=1+v(1)+v(2)+\cdots+v(n-1)
\end{aligned}
$$

- Evidently,

$$
\ddot{a}_{\bar{n}}=1+a_{\overline{n-1}}
$$

- Multiplying the expressions for the values at issuance of the annuities above by $a(n)$, we obtain the expressions for their accumulated values at closing

Review

- Let $a(t)$ denote the accumulation function which governs an annuity and let $v(t)$ denote the discount function, i.e., $v(t)=1 / a(t)$
- Then, in general

$$
\begin{aligned}
& a_{\boldsymbol{m}}=v(1)+v(2)+\cdots+v(n) \\
& a_{\boldsymbol{m}}=1+v(1)+v(2)+\cdots+v(n-1)
\end{aligned}
$$

- Evidently,

$$
\ddot{a}_{\square}=1+a_{\overline{n-1}}
$$

- Multiplying the expressions for the values at issuance of the annuities above by a(n), we obtain the expressions for their accumulated values at closing:

$$
\begin{aligned}
& s_{\bar{n}}=a(n) \cdot a_{\bar{n}}=\frac{a(n)}{a(1)}+\frac{a(n)}{a(2)}+\cdots+1 \\
& \ddot{s}_{\bar{n}}=a(n) \cdot \ddot{a}_{\bar{n}}=\frac{a(n)}{a(0)}+\frac{a(n)}{a(1)}+\cdots+\frac{a(n)}{a(n-1)}
\end{aligned}
$$

Review

- Let $a(t)$ denote the accumulation function which governs an annuity and let $v(t)$ denote the discount function, i.e., $v(t)=1 / a(t)$
- Then, in general

$$
\begin{aligned}
& a_{\boldsymbol{m}}=v(1)+v(2)+\cdots+v(n) \\
& \ddot{a}_{\boldsymbol{m}}=1+v(1)+v(2)+\cdots+v(n-1)
\end{aligned}
$$

- Evidently,

$$
\ddot{a}_{\square}=1+a_{\overline{n-1}}
$$

- Multiplying the expressions for the values at issuance of the annuities above by a(n), we obtain the expressions for their accumulated values at closing:

$$
\begin{aligned}
& s_{\bar{n}}=a(n) \cdot a_{\bar{n}}=\frac{a(n)}{a(1)}+\frac{a(n)}{a(2)}+\cdots+1 \\
& \ddot{s}_{\bar{n}}=a(n) \cdot \ddot{a}_{\bar{n}}=\frac{a(n)}{a(0)}+\frac{a(n)}{a(1)}+\cdots+\frac{a(n)}{a(n-1)}
\end{aligned}
$$

- Assignment: See Example 3.12 .4 in the textbook

An Example: A constant simple discount rate d

- Find an expression for a_{m} assuming each payment is valued at a simple discount rate d.

Recall that the discount function in the case of the simple discount rate has the form

An Example: A constant simple discount rate d

- Find an expression for a_{m} assuming each payment is valued at a simple discount rate d.
\Rightarrow Recall that the discount function in the case of the simple discount rate has the form

$$
v(n)=1-d \cdot n, \text { for every } n \geq 0
$$

An Example: A constant simple discount

 rate d- Find an expression for a_{m} assuming each payment is valued at a simple discount rate d.
\Rightarrow Recall that the discount function in the case of the simple discount rate has the form

$$
v(n)=1-d \cdot n, \text { for every } n \geq 0
$$

Therefore,

$$
\begin{aligned}
a_{n} & =v(1)+v(2)+\cdots+v(n) \\
& =(1-d \cdot 1)+(1-d \cdot 2)+\cdots+(1-d \cdot n) \\
& =n-d \cdot(1+2+\ldots n) \\
& =n-d \cdot \frac{n(n+1)}{2}
\end{aligned}
$$

An Example: Simple interest

- Let the accumulation function be given as

$$
a(t)=1+0.1 t, \text { for } t \geq 0
$$

Find s_{6}.

An Example: Simple interest

- Let the accumulation function be given as

$$
a(t)=1+0.1 t, \text { for } t \geq 0
$$

Find s_{6}.
\Rightarrow

$$
s_{61}=1.6\left[\frac{1}{1.1}+\frac{1}{1.2}+\cdots+\frac{1}{1.6}\right]=7.23
$$

An Example: Time-varying force of interest

- Consider a basic 5 -year annuity-immediate. Assume that the underlying force of interest is given by $\delta_{t}=0.02 t$, for $t \in[0,5]$. Find the accumulated value of this annuity at time 5 .

Assignment: Examples 3.12.8,9,10 Problems 3.12.1,3

An Example: Time-varying force of interest

- Consider a basic 5 -year annuity-immediate. Assume that the underlying force of interest is given by $\delta_{t}=0.02 t$, for $t \in[0,5]$. Find the accumulated value of this annuity at time 5 .
\Rightarrow The accumulated value of all payments at the end of 5 years is

$$
\begin{aligned}
s_{5} & =\sum_{k=1}^{5} \frac{a(5)}{a(k)}=\sum_{k=1}^{5} \frac{e^{\int_{0}^{5} \delta_{t} d t}}{e^{\int_{0}^{k} \delta_{t} d t}}=\sum_{k=1}^{5} e^{\int_{k}^{5} \delta_{t} d t} \\
& =\sum_{k=1}^{5} e^{\int_{k}^{5} 0.02 t d t}=\sum_{k=1}^{5} e^{\left.0.01 t^{2}\right]_{k}^{5}} \\
& =e^{0.24}+e^{0.21}+e^{0.16}+e^{0.09}+1=5.7726
\end{aligned}
$$

An Example: Time-varying force of interest

- Consider a basic 5 -year annuity-immediate. Assume that the underlying force of interest is given by $\delta_{t}=0.02 t$, for $t \in[0,5]$. Find the accumulated value of this annuity at time 5 .
\Rightarrow The accumulated value of all payments at the end of 5 years is

$$
\begin{aligned}
s_{5} & =\sum_{k=1}^{5} \frac{a(5)}{a(k)}=\sum_{k=1}^{5} \frac{e^{\int_{0}^{5} \delta_{t} d t}}{e^{\int_{0}^{k} \delta_{t} d t}}=\sum_{k=1}^{5} e^{\int_{k}^{5} \delta_{t} d t} \\
& =\sum_{k=1}^{5} e^{\int_{k}^{5} 0.02 t d t}=\sum_{k=1}^{5} e^{\left.0.01 t^{2}\right]_{k}^{5}} \\
& =e^{0.24}+e^{0.21}+e^{0.16}+e^{0.09}+1=5.7726
\end{aligned}
$$

- Assignment: Examples 3.12.8,9,10 Problems 3.12.1,3

An Example

- Find the accumulated value of a 10 -year annuity-immediate of $\$ 100$ per year if the effective interest rate is 5% for the first 6 years and 4% for the last 4 years.
The accumulated value of the first six payments after six years is At the end of the 10 years, having accrued interest at a rate of 4%
during the last 4 years, this value grows to $100 \cdot s_{6} 0.05 \cdot(1 \mathrm{n} \Lambda)^{4}$

An Example

- Find the accumulated value of a 10 -year annuity-immediate of $\$ 100$ per year if the effective interest rate is 5% for the first 6 years and 4% for the last 4 years.
\Rightarrow The accumulated value of the first six payments after six years is

$$
100 \cdot s_{6} 0.05
$$

At he end of the 10 yeas havig sccened inesest tat ate of tor during the last 4 years, this value grows to
\qquad

An Example

- Find the accumulated value of a 10 -year annuity-immediate of $\$ 100$ per year if the effective interest rate is 5% for the first 6 years and 4% for the last 4 years.
\Rightarrow The accumulated value of the first six payments after six years is

$$
100 \cdot s_{60.05}
$$

At the end of the 10 years, having accrued interest at a rate of 4% during the last 4 years, this value grows to

$$
100 \cdot s_{60.05} \cdot(1.04)^{4}
$$

So, the final answer is

An Example

- Find the accumulated value of a 10 -year annuity-immediate of $\$ 100$ per year if the effective interest rate is 5% for the first 6 years and 4% for the last 4 years.
\Rightarrow The accumulated value of the first six payments after six years is

$$
100 \cdot s_{60.05}
$$

At the end of the 10 years, having accrued interest at a rate of 4% during the last 4 years, this value grows to

$$
100 \cdot s_{60.05} \cdot(1.04)^{4}
$$

Meanwhile, the accumulated value of the last 4 payments is

$$
100 \cdot s_{4 \mid 0.04}
$$

So, the final answer is

An Example

- Find the accumulated value of a 10 -year annuity-immediate of $\$ 100$ per year if the effective interest rate is 5% for the first 6 years and 4% for the last 4 years.
\Rightarrow The accumulated value of the first six payments after six years is

$$
100 \cdot s_{60.05}
$$

At the end of the 10 years, having accrued interest at a rate of 4% during the last 4 years, this value grows to

$$
100 \cdot s_{6} 0.05 \cdot(1.04)^{4}
$$

Meanwhile, the accumulated value of the last 4 payments is

$$
100 \cdot s_{40.04}
$$

So, the final answer is

$$
100\left[s_{60.05} \cdot(1.04)^{4}+s_{40.04}\right]=1251.43
$$

