Deferred Annuities Certain

General terminology

- A deferred annuity is an annuity whose first payment takes place at some predetermined time $k+1$

[^0]
General terminology

- A deferred annuity is an annuity whose first payment takes place at some predetermined time $k+1$
- ${ }_{k \mid n} a$... the present value of a basic deferred annuity-immediate with term equal to n and the deferral period k; it can be readily expressed as

$$
k \mid n a=v^{k} \cdot a_{n \mid}=a_{\overline{k+n} \mid}-a_{\bar{k} \mid}
$$

 ampuitis completed hee we neen nove than one pexiod before and mode than one eperide dater since these wo cosses re essily reduced to annuities immediate and annuities due

- It will he clear what we mean after some examnles

General terminology

- A deferred annuity is an annuity whose first payment takes place at some predetermined time $k+1$
- ${ }_{k \mid n} a$... the present value of a basic deferred annuity-immediate with term equal to n and the deferral period k; it can be readily expressed as

$$
{ }_{k \mid n} a=v^{k} \cdot a_{n}=a_{\overline{k+n}}-a_{k}
$$

- It makes sense to ask for the value of a deferred annuity at any time before the beginning of payments and also after the term of the annuity is completed; here we mean more than one period before and more than one period after since these two cases are easily reduced to annuities immediate and annuities due

General terminology

- A deferred annuity is an annuity whose first payment takes place at some predetermined time $k+1$
- ${ }_{k \mid n} a$...the present value of a basic deferred annuity-immediate with term equal to n and the deferral period k; it can be readily expressed as

$$
k \mid n a=v^{k} \cdot a_{n \mid}=a_{\overline{k+n} \mid}-a_{\bar{k} \mid}
$$

- It makes sense to ask for the value of a deferred annuity at any time before the beginning of payments and also after the term of the annuity is completed; here we mean more than one period before and more than one period after since these two cases are easily reduced to annuities immediate and annuities due
- It will be clear what we mean after some examples ...

An Example: Accumulated value after the last payment date

- On January $1^{\text {st }}, 2009$, you open an investment account. If an annuity such that twelve annual payments equal to $\$ 2,000$ are made starting December $31^{\text {st }}$, 2009 is going to be credited to the account, find the account balance on December $31^{\text {st }} 2024$. Assume that $i=0.05$.

An Example: Accumulated value after the last payment date (cont'd)

\Rightarrow The payments are level, so let us start by considering a basic deferred annuity-immediate.

During the following four years this value will grow to

An Example: Accumulated value after the last payment date (cont'd)

\Rightarrow The payments are level, so let us start by considering a basic deferred annuity-immediate.
The accumulated value of the $12-$ year long annuity-immediate at the time of the last payment, i.e., on December $31^{s t}, 2020$, is

$$
s_{12 \mid} 0.05
$$

During the following four years this value will grow to

Finally, recall that each level payment equals $\$ 2,000$. So, the accumulated value we seek is

An Example: Accumulated value after the last payment date (cont'd)

\Rightarrow The payments are level, so let us start by considering a basic deferred annuity-immediate.
The accumulated value of the 12 -year long annuity-immediate at the time of the last payment, i.e., on December $31^{s t}, 2020$, is

$$
s_{\overline{12}} 0.05
$$

During the following four years this value will grow to

$$
(1+0.05)^{4} \cdot s_{12 \mid} 0.05
$$

Finally, recall that
accumulated value
$2000 \cdot(1+0.05)^{4}$

An Example: Accumulated value after the last payment date (cont'd)

\Rightarrow The payments are level, so let us start by considering a basic deferred annuity-immediate.
The accumulated value of the $12-$ year long annuity-immediate at the time of the last payment, i.e., on December $31^{\text {st }}, 2020$, is

$$
s_{\overline{12}} 0.05
$$

During the following four years this value will grow to

$$
(1+0.05)^{4} \cdot s_{12} 0.05
$$

Finally, recall that each level payment equals $\$ 2,000$. So, the accumulated value we seek is

$$
\begin{aligned}
2000 \cdot(1+0.05)^{4} \cdot s_{\overline{12 \mid} 0.05} & =2000 \cdot(1+0.05)^{4} \cdot \frac{(1+0.05)^{12}-1}{0.05} \\
& =38,694.73
\end{aligned}
$$

An Example: Accumulated value after the last payment date (cont'd)

\Rightarrow The payments are level, so let us start by considering a basic deferred annuity-immediate.
The accumulated value of the 12 -year long annuity-immediate at the time of the last payment, i.e., on December $31^{\text {st }}, 2020$, is

$$
s_{\overline{12}} 0.05
$$

During the following four years this value will grow to

$$
(1+0.05)^{4} \cdot s_{12} 0.05
$$

Finally, recall that each level payment equals $\$ 2,000$. So, the accumulated value we seek is

$$
\begin{aligned}
2000 \cdot(1+0.05)^{4} \cdot s_{12 \mid 0.05} & =2000 \cdot(1+0.05)^{4} \cdot \frac{(1+0.05)^{12}-1}{0.05} \\
& =38,694.73
\end{aligned}
$$

- Assignment: For a similar story, see Example 3.5.2

An Example:
 Present value of a deferred annuity The value before the term of the annuity

- Today is January $1^{\text {st }}$, 2010. An annuity-immediate pays $\$ 1,000$ at the end of every quarter. The first payment is scheduled for March $31^{\text {st }}, 2011$ and the last payment for December $31^{\text {st }}, 2016$.
present value of the annuity.

An Example:
 Present value of a deferred annuity The value before the term of the annuity

- Today is January $1^{\text {st }}$, 2010. An annuity-immediate pays $\$ 1,000$ at the end of every quarter. The first payment is scheduled for March $31^{\text {st }}, 2011$ and the last payment for December $31^{\text {st }}, 2016$. Assume that the rate of interest is equal to $i^{(4)}=0.08$. Find the present value of the annuity.

An Example:
 Present value of a deferred annuity The value before the term of the annuity
 (cont'd)

\Rightarrow It is more convenient to be thinking in terms of quarter-years. The interest rate per quarter is $j=i^{(4)} / 4=0.02$.

So, the present value of a basic annuity-immediate is

An Example:
 Present value of a deferred annuity The value before the term of the annuity
 (cont'd)

$\Rightarrow \mathrm{It}$ is more convenient to be thinking in terms of quarter-years. The interest rate per quarter is $j=i^{(4)} / 4=0.02$.
The value on January $1^{\text {st }}$, 2011 of a basic annuity-immediate corresponding to the one in the example is

$$
a_{2410.02}=\frac{1-v^{24}}{i}=18.913 .93
$$

So, the present value of a basic annuity-immediate is

Finally, the present value of our level annuity-immediate is

An Example:
 Present value of a deferred annuity The value before the term of the annuity
 (cont'd)

$\Rightarrow \mathrm{It}$ is more convenient to be thinking in terms of quarter-years. The interest rate per quarter is $j=i^{(4)} / 4=0.02$.
The value on January $1^{\text {st }}$, 2011 of a basic annuity-immediate corresponding to the one in the example is

$$
a_{\overline{24} 0.02}=\frac{1-v^{24}}{i}=18.913 .93
$$

So, the present value of a basic annuity-immediate is

$$
\left(\frac{1}{1.02}\right)^{4} a_{2410.02}=17.4735
$$

Finally, the present value of our level annuity-immediate is

An Example:
 Present value of a deferred annuity The value before the term of the annuity

\Rightarrow It is more convenient to be thinking in terms of quarter-years. The interest rate per quarter is $j=i^{(4)} / 4=0.02$.
The value on January $1^{\text {st }}$, 2011 of a basic annuity-immediate corresponding to the one in the example is

$$
a_{2410.02}=\frac{1-v^{24}}{i}=18.913 .93
$$

So, the present value of a basic annuity-immediate is

$$
\left(\frac{1}{1.02}\right)^{4} a_{2410.02}=17.4735
$$

Finally, the present value of our level annuity-immediate is

$$
1000 \cdot\left(\frac{1}{1.02}\right)^{4} \cdot a_{24} 0.02=17,473.5
$$

Assignment

- Examples 3.5.3,4
- Problems 3.5.1,2

Assignment

- Examples 3.5.3,4
- Problems 3.5.1,2

[^0]: It makes sense to ask for the value of a deferred annuity at any time before the beginning of payments and also after the term of the annuity is completed; here we mean more than one period before and more than one period after since these two cases are easily reduced to annuities immediate and annuities due

