Level Annuities with Payments Less Frequent than Each Interest Period

(1) Annuity-immediate
(2) Annuity-due

Level Annuities with Payments Less Frequent than Each Interest Period

(1) Annuity-immediate
(2) Annuity-due

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods
- i... the effective interest rate per interest period
- / . . . the effective interest rate per payment period, i.e.
- Then, the value at issuance of this annuity is $a_{r l}$ and

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods
- i... the effective interest rate per interest period
- I ... the effective interest rate per payment period, i.e.,

$$
I=(1+i)^{k}-1
$$

- Then, the value at issuance of this annuity is a_{r} । and

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods
- $i \ldots$ the effective interest rate per interest period
- I ... the effective interest rate per payment period, i.e.,

$$
I=(1+i)^{k}-1
$$

- Then, the value at issuance of this annuity is a_{r} । and

$$
a_{\bar{r} I}=\frac{1-(1+I)^{-r}}{I}=\frac{1-(1+i)^{-r k}}{(1+i)^{k}-1}=\frac{a_{n i}}{s_{\bar{k} i}}
$$

- The accumulated value is $s_{r I}=\frac{s_{\pi i}}{s_{\pi i}}$

Symoblic approach

- In this chapter we have to distinguish between payment periods and interest periods
- Consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- In other words, this annuity has a payment at the end of each k interest periods
- $i \ldots$ the effective interest rate per interest period
- I ... the effective interest rate per payment period, i.e.,

$$
I=(1+i)^{k}-1
$$

- Then, the value at issuance of this annuity is a_{r} । and

$$
a_{\Gamma I}=\frac{1-(1+I)^{-r}}{I}=\frac{1-(1+i)^{-r k}}{(1+i)^{k}-1}=\frac{a_{\Pi} i}{s_{k} i}
$$

- The accumulated value is $s_{F I}=\frac{s_{n i}}{s_{k}{ }^{i}}$

An Example

- Find an expression in terms of symbols of the type a_{n} and $s_{\vec{\sigma}}$, for the present value of an annuity in which there are a total of r payments of 1 . The first payment is to be made 7 years from today, and the remaining payments happen at three year intervals.
annual discount factor as

Calculating the partial sum of the geometric series above, we get

An Example

- Find an expression in terms of symbols of the type a_{n} and $s_{\boldsymbol{m}}$, for the present value of an annuity in which there are a total of r payments of 1 . The first payment is to be made 7 years from today, and the remaining payments happen at three year intervals.
\Rightarrow The present value of this annuity can be expressed in terms of the annual discount factor as

$$
v^{7}+v^{10}+v^{13}+\cdots+v^{3 r+4}
$$

An Example

- Find an expression in terms of symbols of the type a_{m} and s_{m}, for the present value of an annuity in which there are a total of r payments of 1 . The first payment is to be made 7 years from today, and the remaining payments happen at three year intervals.
\Rightarrow The present value of this annuity can be expressed in terms of the annual discount factor as

$$
v^{7}+v^{10}+v^{13}+\cdots+v^{3 r+4}
$$

Calculating the partial sum of the geometric series above, we get

$$
\frac{v^{7}-v^{3 r+7}}{1-v^{3}}=\frac{-\left(1-v^{7}\right)+\left(1-v^{3 r+7}\right)}{1-v^{3}}=\frac{-\frac{1-v^{7}}{i}+\frac{1-v^{3 r+7}}{i}}{\frac{1-v^{3}}{i}}=\frac{a_{3 r+7}-a_{7}}{a_{31}}
$$

An Example

- Find an expression in terms of symbols of the type a_{n} and s_{n}, for the present value of an annuity in which there are a total of r payments of 1 . The first payment is to be made 7 years from today, and the remaining payments happen at three year intervals.
\Rightarrow The present value of this annuity can be expressed in terms of the annual discount factor as

$$
v^{7}+v^{10}+v^{13}+\cdots+v^{3 r+4}
$$

Calculating the partial sum of the geometric series above, we get

$$
\frac{v^{7}-v^{3 r+7}}{1-v^{3}}=\frac{-\left(1-v^{7}\right)+\left(1-v^{3 r+7}\right)}{1-v^{3}}=\frac{-\frac{1-v^{7}}{i}+\frac{1-v^{3 r+7}}{i}}{\frac{1-v^{3}}{i}}=\frac{a_{3 r+7}-a_{7}}{a_{3}}
$$

Caveat: The expression we obtained above is not unique!

An Example: Unknown final payment

- An investment of $\$ 1000$ is used to make payments of $\$ 100$ at the end of each year for as long as possible with a smaller final payment to be made at the time of the last regular payment. If interest is 7% convertible semiannually, find the number of payments and the amount of the total final payment.

An Example: Unknown final payment (cont'd)

\Rightarrow Using the expression for the present value of this annuity, we get the equation of value at time 0

$$
100 \cdot \frac{a_{n 0.035}}{s_{\overline{2} 0.035}}=1000
$$

where n denotes the unknown number of regular interest periods that the annuity lasts.
$a_{n} 0.035=10 \cdot s_{210.035}=20.35$
We get that $n=36$ and that 18 regular pavments and an additional
smaller payment must be made.

An Example: Unknown final payment (cont'd)

\Rightarrow Using the expression for the present value of this annuity, we get the equation of value at time 0

$$
100 \cdot \frac{a_{n ~} 0.035}{s_{2 \mid 0.035}}=1000
$$

where n denotes the unknown number of regular interest periods that the annuity lasts.
The equation of value yields

$$
a_{\text {п } 0.035}=10 \cdot s_{2 \mid 0.035}=20.35
$$

We get that $n=36$ and that 18 regular payments and an additional
smaller payment must be made.
Let R denote the amount of the smaller final payment. Then, the time n equation of value reads as

An Example: Unknown final payment (cont'd)

\Rightarrow Using the expression for the present value of this annuity, we get the equation of value at time 0

$$
100 \cdot \frac{a_{m} 0.035}{s_{20.035}}=1000
$$

where n denotes the unknown number of regular interest periods that the annuity lasts.
The equation of value yields

$$
a_{n 0.035}=10 \cdot s_{270.035}=20.35
$$

We get that $n=36$ and that 18 regular payments and an additional smaller payment must be made.

An Example: Unknown final payment (cont'd)

\Rightarrow Using the expression for the present value of this annuity, we get the equation of value at time 0

$$
100 \cdot \frac{a_{n 0.035}}{s_{2 \mid 0.035}}=1000
$$

where n denotes the unknown number of regular interest periods that the annuity lasts.
The equation of value yields

$$
a_{n} 0.035=10 \cdot s_{2} 0.035=20.35
$$

We get that $n=36$ and that 18 regular payments and an additional smaller payment must be made.
Let R denote the amount of the smaller final payment. Then, the time n equation of value reads as

$$
R+100 \cdot \frac{s_{\overline{36} 0.035}}{s_{2} 0.035}=1000 \cdot(1.035)^{36}
$$

An Example: Unknown final payment (cont'd)

\Rightarrow Using the expression for the present value of this annuity, we get the equation of value at time 0

$$
100 \cdot \frac{a_{n 0.035}}{s_{2 \mid 0.035}}=1000
$$

where n denotes the unknown number of regular interest periods that the annuity lasts.
The equation of value yields

$$
a_{n} 0.035=10 \cdot s_{2} 0.035=20.35
$$

We get that $n=36$ and that 18 regular payments and an additional smaller payment must be made.
Let R denote the amount of the smaller final payment. Then, the time n equation of value reads as

$$
R+100 \cdot \frac{s_{\overline{36} 0.035}}{s_{\overline{2} 10.035}}=1000 \cdot(1.035)^{36}
$$

Thus, $R=\$ 10.09$

Level Annuities with Payments Less Frequent than Each Interest Period

(1) Annuity-immediate
(2) Annuity-due

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
This annuity has a payment at the beginning of each k interest periods

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- This annuity has a payment at the beginning of each k interest periods

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- This annuity has a payment at the beginning of each k interest periods
- Then, the value at issuance of this annuity-due is \ddot{a}_{F} / and

$$
\ddot{a}_{r l}=(1+I) \cdot a_{\Gamma} I=\frac{a_{\Pi} i}{a_{k \mid i}}
$$

 periods steter tre estat payment

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- This annuity has a payment at the beginning of each k interest periods
- Then, the value at issuance of this annuity-due is \ddot{a}_{F} । and

$$
\ddot{a}_{r l}=(1+I) \cdot a_{r} I=\frac{a_{\Pi} i}{a_{k} i}
$$

- Similarly, we get that the accumulated value equals $\ddot{s}_{\Gamma I}=\frac{s_{\Pi i i}}{a_{\left.\bar{k}\right|^{i}}}$

Value at issuance and accumulated value

- Again, consider a basic annuity that lasts for n interest periods, and has r payments where $n=r \cdot k$ for some integer k
- This annuity has a payment at the beginning of each k interest periods
- Then, the value at issuance of this annuity-due is \ddot{a}_{F} । and

$$
\ddot{a}_{r l}=(1+I) \cdot a_{r} I=\frac{a_{\Pi} i}{a_{k} i}
$$

- Similarly, we get that the accumulated value equals $\ddot{s}_{\Gamma I}=\frac{s_{\Pi i}}{a_{\left.\bar{k}\right|^{i}}}$
- Caveat: The above accumulated value is k interest conversion periods after the last payment ...

An Example: Accumulated value

- Find the accumulated value at the end of four years of an investment fund in which $\$ 100$ is deposited at the beginning of each quarter for the first two years and $\$ 200$ is deposited at the beginning of every quarter for the second two years. Assume that the fund earns 12% convertible monthly.

48 interest periods and each payment period consists of 3 interest coversion nerinds So the accumulated value is

An Example: Accumulated value

- Find the accumulated value at the end of four years of an investment fund in which $\$ 100$ is deposited at the beginning of each quarter for the first two years and $\$ 200$ is deposited at the beginning of every quarter for the second two years. Assume that the fund earns 12% convertible monthly.
\Rightarrow The rate of interest is 1% per month. In this annuity-due, there are 48 interest periods and each payment period consists of 3 interest coversion periods. So, the accumulated value is

$$
100 \cdot \frac{s_{\overline{48} 0.01}+s_{\overline{24} 0.01}}{a_{\overline{31}} 0.01}=100 \cdot \frac{61.2226+26.9735}{2.9410}=\$ 2999
$$

An Example: Accumulated value

- Find the accumulated value at the end of four years of an investment fund in which $\$ 100$ is deposited at the beginning of each quarter for the first two years and $\$ 200$ is deposited at the beginning of every quarter for the second two years. Assume that the fund earns 12% convertible monthly.
\Rightarrow The rate of interest is 1% per month. In this annuity-due, there are 48 interest periods and each payment period consists of 3 interest coversion periods. So, the accumulated value is

$$
100 \cdot \frac{s_{\overline{48} 0.01}+s_{\overline{24} 0.01}}{a_{310.01}}=100 \cdot \frac{61.2226+26.9735}{2.9410}=\$ 2999
$$

- Assignment: Examples 4.2.9, 12

Problems 4.2.1,3

