Annuities with Payments More Frequent than Each Interest Period and Payments in Arithmetic Progression

1. A Constant Increase Each Payment Period
Annuities with Payments More Frequent than Each Interest Period and Payments in Arithmetic Progression

1. A Constant Increase Each Payment Period
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following annuity-immediate:

- the annuity lasts for n interest periods;
- the payments take place at the end of an m^{th} of an interest period;
- the j^{th} payment is equal to j/m^2, for $j = 1, 2, \ldots, nm$;
- Note that the payments increase by a constant amount $1/m^2$ for each payment period;
- Note that the total increase in payments in every interest period equals

$$m \cdot \frac{1}{m^2} = \frac{1}{m}$$

- $(I^{(m)} a)^{(m)}_{nm}$ stands for the present value of the above annuity, i.e.,

$$(I^{(m)} a)^{(m)}_{nm} i = \frac{1}{m^2} (I a)_{nm} J$$

where J denotes the effective interest rate per payment period:

$$J = (1 + i)^{1/m} - 1$$
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following annuity-immediate:

- the annuity lasts for n interest periods;
- the payments take place at the end of an m^{th} of an interest period;
- the j^{th} payment is equal to j/m^2, for $j = 1, 2, \ldots, nm$

- Note that the payments increase by a constant amount $1/m^2$ for each payment period
- Note that the total increase in payments in every interest period equals

$$m \cdot \frac{1}{m^2} = \frac{1}{m}$$

- $(I^{(m)}a)^{(m)}_{n|}$ stands for the present value of the above annuity, i.e.,

$$(I^{(m)}a)^{(m)}_{n|} = \frac{1}{m^2} (Ia)^{nm}_{nm}$$

where J denotes the effective interest rate per payment period:

$$J = (1 + i)^{1/m} - 1$$
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following annuity-immediate:

- the annuity lasts for n interest periods;
- the payments take place at the end of an m^{th} of an interest period;
- the j^{th} payment is equal to j/m^2, for $j = 1, 2, \ldots, nm$

- Note that the payments increase by a constant amount $1/m^2$ for each payment period.
- Note that the total increase in payments in every interest period equals

\[m \cdot \frac{1}{m^2} = \frac{1}{m} \]

- $(I^{(m)} a)_{m}^{(m)} \ldots$ stands for the present value of the above annuity, i.e.,

\[(I^{(m)} a)_{m}^{(m)} \cdot i = \frac{1}{m^2} (la)_{nm} \cdot J \]

where J denotes the effective interest rate per payment period:

\[J = (1 + i)^{1/m} - 1 \]
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to i.
Consider the following annuity-immediate:

- the annuity lasts for n interest periods;
- the payments take place at the end of an m^{th} of an interest period;
- the j^{th} payment is equal to j/m^2, for $j = 1, 2, \ldots, nm$;
- Note that the payments increase by a constant amount $1/m^2$ for each payment period.

Note that the total increase in payments in every interest period equals

$$m \cdot \frac{1}{m^2} = \frac{1}{m}$$

$(I^{(m)}a)^{(m)}$... stands for the present value of the above annuity, i.e.,

$$(I^{(m)}a)^{(m)}_{nm} i = \frac{1}{m^2} (la)^{nm} J$$

where J denotes the effective interest rate per payment period:

$$J = (1 + i)^{1/m} - 1$$
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to \(i \).

Consider the following annuity-immediate:

- the annuity lasts for \(n \) interest periods;
- the payments take place at the end of an \(m^{th} \) of an interest period;
- the \(j^{th} \) payment is equal to \(j/m^2 \), for \(j = 1, 2, \ldots, nm \);
- Note that the payments increase by a constant amount \(1/m^2 \) for each payment period;
- Note that the total increase in payments in every interest period equals

\[
m \cdot \frac{1}{m^2} = \frac{1}{m}
\]

- \((l^{(m)} a)^{(m)}_{\overline{n|}}\) stands for the present value of the above annuity, i.e.,

\[
(l^{(m)} a)^{(m)}_{\overline{n|}} i = \frac{1}{m^2} (l a)_{\overline{nm|}} J
\]

where \(J \) denotes the effective interest rate per payment period:

\[
J = (1 + i)^{1/m} - 1
\]
The Set-up

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following annuity-immediate:

- the annuity lasts for n interest periods;
- the payments take place at the end of an m^{th} of an interest period;
- the j^{th} payment is equal to j/m^2, for $j = 1, 2, \ldots, nm$
- Note that the payments increase by a constant amount $1/m^2$ for each payment period
- Note that the total increase in payments in every interest period equals

$$m \cdot \frac{1}{m^2} = \frac{1}{m}$$

- $(I^{(m)}a)^{(m)}_{n|m}$. . . stands for the present value of the above annuity, i.e.,

$$(I^{(m)}a)^{(m)}_{n|m} i = \frac{1}{m^2} (I a)_{nm | m} J$$

where J denotes the effective interest rate per payment period:

$$J = (1 + i)^{1/m} - 1$$
Value at issuance and accumulated value: Formulae

- So, the **present value** of the annuity-immediate described above is

\[
(I^{(m)} a^{(m)})^{(m)}_i = \frac{1}{m^2} (I a)^{nm\|} J = \frac{1}{m} \bar{a}_{nm}^m J - n v^n = \ddot{a}_{m}^{(m)} i - n v^n
\]

- Similarly, the **accumulated value** of the annuity-immediate described above is

\[
(I^{(m)} s^{(m)})^{(m)}_i = \ddot{s}_{m}^{(m)} i - n
\]
Value at issuance and accumulated value:

Formulae

- So, the **present value** of the annuity-immediate described above is

\[
(I^{(m)} a^{(m)})_{\overline{nm}} i = \frac{1}{m^2} (Ia)_{\overline{nm}} j = \frac{1}{m} \frac{\ddot{a}_{\overline{nm}} j - n v^n}{mJ} = \frac{\ddot{a}^{(m)} (m) i - n v^n}{i^{(m)}}
\]

- Similarly, the **accumulated value** of the annuity-immediate described above is

\[
(I^{(m)} s^{(m)})_{\overline{nm}} i = \frac{\ddot{s}^{(m)} (m) i - n}{i^{(m)}}
\]