Continuously paying annuities

1. Compound interest: Increasing payments

2. General Accumulation Function
Continuously paying annuities

1. Compound interest: Increasing payments

2. General Accumulation Function
The Set-up: Unit increase in payments

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following continuous annuity:

- the annuity lasts for n interest periods;
- the payments take place continuously, at a rate of t per interest period at time t.
- $(\bar{a})_{\overline{n}}$ stands for the present value of the above annuity, i.e.,
 \[
 (\bar{a})_{\overline{n}} = \lim_{m \to \infty} (\bar{a})_{\overline{m}} = \frac{\bar{a}_{\overline{n}} - n v^n}{\delta}
 \]
- It is easier to see what happens by noting that
 \[
 (\bar{a})_{\overline{n}} = \int_{0}^{n} t \cdot v^t dt
 \]
- $(\bar{s})_{\overline{n}}$ stands for the accumulated value of the above annuity, i.e.,
 \[
 (\bar{s})_{\overline{n}} = \lim_{m \to \infty} (\bar{s})_{\overline{m}} = \frac{\bar{s}_{\overline{n}} - n}{\delta}
 \]
The Set-up: Unit increase in payments

Assume that we have compound interest with the effective interest rate per interest period equal to i.

Consider the following continuous annuity:

- the annuity lasts for n interest periods;
- the payments take place continuously, at a rate of t per interest period at time t.
- $(\bar{a}_m\bar{a})_n\ i\ldots$ stands for the present value of the above annuity, i.e.,

$$
(\bar{a}_m\bar{a})_n\ i = \lim_{m \to \infty} (I^{(m)}a)^{(m)}_n = \frac{\bar{a}_m\ i - n\delta^n}{\delta}
$$

- It is easier to see what happens by noting that

$$
(\bar{a}_m\bar{a})_n\ i = \int_0^n t \cdot v^t \, dt
$$

- $(\bar{s}_m\bar{s})_n\ i\ldots$ stands for the accumulated value of the above annuity, i.e.,

$$
(\bar{s}_m\bar{s})_n\ i = \lim_{m \to \infty} (I^{(m)}s)^{(m)}_n = \frac{\bar{s}_m\ i - n}{\delta}
$$
The Set-up: Unit increase in payments

Assume that we have compound interest with the effective interest rate per interest period equal to i.
Consider the following continuous annuity:

- the annuity lasts for n interest periods;
- the payments take place continuously, at a rate of t per interest period at time t.
- $(\overline{Ia})_m i$... stands for the present value of the above annuity, i.e.,
 \[
 (\overline{Ia})_m i = \lim_{m \to \infty} (I^{(m)}a)^{(m)}_m i = \frac{\overline{a}_m i - nv^n}{\delta}
 \]

- It is easier to see what happens by noting that
 \[
 (\overline{Ia})_m i = \int_0^n t \cdot v^t dt
 \]

- $(\overline{Is})_m i$... stands for the accumulated value of the above annuity, i.e.,
 \[
 (\overline{Is})_m i = \lim_{m \to \infty} (I^{(m)}s)^{(m)}_m i = \frac{\overline{s}_m i - n}{\delta}
 \]
The Set-up: Unit increase in payments

Assume that we have compound interest with the effective interest rate per interest period equal to \(i \).

Consider the following continuous annuity:

- the annuity lasts for \(n \) interest periods;
- the payments take place continuously, at a rate of \(t \) per interest period at time \(t \).
- \((\bar{I}a)_{\bar{m}i}\) stands for the present value of the above annuity, i.e.,
 \[
 (\bar{I}a)_{\bar{m}i} = \lim_{m \to \infty} (I^{(m)}a)_{\bar{m}i} = \frac{\bar{a}_{\bar{m}i} - n v^n}{\delta}
 \]

- It is easier to see what happens by noting that
 \[
 (\bar{I}a)_{\bar{m}i} = \int_0^n t \cdot v^t \, dt
 \]

- \((\bar{I}s)_{\bar{m}i}\) stands for the accumulated value of the above annuity, i.e.,
 \[
 (\bar{I}s)_{\bar{m}i} = \lim_{m \to \infty} (I^{(m)}s)_{\bar{m}i} = \frac{\bar{s}_{\bar{m}i} - n}{\delta}
 \]
The Set-up: Unit increase in payments

Assume that we have compound interest with the effective interest rate per interest period equal to \(i\).
Consider the following continuous annuity:

- the annuity lasts for \(n\) interest periods;
- the payments take place continuously, at a rate of \(t\) per interest period at time \(t\).
- \((\bar{I}a)_{\overline{n}i}\) ... stands for the present value of the above annuity, i.e.,
 \[
 (\bar{I}a)_{\overline{n}i} = \lim_{m \to \infty} (I^{(m)}a)^{(m)}_{\overline{n}i} = \frac{\bar{a}_{\overline{n}i} - n\nu^n}{\delta}
 \]
- It is easier to see what happens by noting that
 \[
 (\bar{I}a)_{\overline{n}i} = \int_0^n t \cdot \nu^t dt
 \]
- \((\bar{I}s)_{\overline{n}i}\) ... stands for the accumulated value of the above annuity, i.e.,
 \[
 (\bar{I}s)_{\overline{n}i} = \lim_{m \to \infty} (I^{(m)}s)^{(m)}_{\overline{n}i} = \frac{\bar{s}_{\overline{n}i} - n}{\delta}
 \]
Continuously paying annuities

1. Compound interest: Increasing payments

2. General Accumulation Function
Unit payment stream

• Let \(v(t) \) denote the general discount function

• Let us first consider the basic continuous annuity, i.e., the annuity that pays at the unit rate at all times.

• Then, the present value of such an annuity with length \(n \) equals

\[
\int_0^n v(t) \, dt
\]

• We still denote the above present value by \(\bar{a}_{\overline{n}} \)

• In the special case of compound interest, the above formula collapses to the one already familiar to us from the compound interest set-up. You can verify this through simple integration . . .
Unit payment stream

• Let \(v(t) \) denote the general discount function
• Let us first consider the basic continuous annuity, i.e., the annuity that pays at the unit rate at all times.
• Then, the present value of such an annuity with length \(n \) equals
\[
\int_0^n v(t) \, dt
\]
• We still denote the above present value by \(\bar{a}_n \)
• In the special case of compound interest, the above formula collapses to the one already familiar to us from the compound interest set-up. You can verify this through simple integration . . .
Unit payment stream

Let $v(t)$ denote the general discount function.

Let us first consider the basic continuous annuity, i.e., the annuity that pays at the unit rate at all times.

Then, the present value of such an annuity with length n equals

$$\int_0^n v(t) \, dt$$

We still denote the above present value by \bar{a}_n.

In the special case of compound interest, the above formula collapses to the one already familiar to us from the compound interest set-up. You can verify this through simple integration...
Unit payment stream

• Let $v(t)$ denote the general discount function
• Let us first consider the basic continuous annuity, i.e., the annuity that pays at the unit rate at all times.
• Then, the present value of such an annuity with length n equals

$$\int_0^n v(t) \, dt$$

• We still denote the above present value by \overline{a}_n
• In the special case of compound interest, the above formula collapses to the one already familiar to us from the compound interest set-up. You can verify this through simple integration . . .
Let \(v(t) \) denote the general discount function.

Let us first consider the basic continuous annuity, i.e., the annuity that pays at the unit rate at all times.

Then, the present value of such an annuity with length \(n \) equals

\[
\int_0^n v(t) \, dt
\]

We still denote the above present value by \(\bar{a}_n \).

In the special case of compound interest, the above formula collapses to the one already familiar to us from the compound interest set-up. You can verify this through simple integration . . .
Any payment stream

- Let $f(t)$ be a continuous function which represents the rate of payments of a continuous annuity on the time interval $[0, n]$
- Then, the present value of this annuity can be obtained as

$$\int_{0}^{n} f(t) \cdot v(t) \, dt$$

- Assignment: Problems 4.6.1, 2, 3, 5, 7
Any payment stream

- Let $f(t)$ be a continuous function which represents the rate of payments of a continuous annuity on the time interval $[0, n]$
- Then, the present value of this annuity can be obtained as

$$\int_0^n f(t) \cdot v(t) \, dt$$

- Assignment: Problems 4.6.1, 2, 3, 5, 7
Any payment stream

- Let $f(t)$ be a continuous function which represents the rate of payments of a continuous annuity on the time interval $[0, n]$.
- Then, the present value of this annuity can be obtained as
 $$\int_0^n f(t) \cdot v(t) \, dt$$
- **Assignment**: Problems 4.6.1, 2, 3, 5, 7