3.1. **Put-call parity.** Provide your **final solution only** to the following problem(s). Each problem will be worth 2 points.

Problem 3.1. A company forecasts to pay dividends of $0.90, $1.20 and $1.45 in 3, 6 and 9 months from now, respectively. Given that the interest rate is $r = 5.5\%$, how much dollar impact will dividends have on prices of 9–month options? More precisely, what is the present value of the projected dividend payments?

(a) $3.45
(b) $3.90
(c) $4.22
(d) $4.50
(e) None of the above.

Problem 3.2. A certain common stock is priced at $42.00 per share. Assume that the continuously compounded interest rate is $r = 10.00\%$ per annum. Consider a 50–strike European call, maturing in 3 years which currently sells for $10.80. What is the price of the corresponding 3–year, 50–strike European put option?

(a) $5.20
(b) $5.69
(c) $5.04
(d) $5.84
(e) None of the above.

Problem 3.3. A certain common stock is priced at $99.00 per share and pays a continuous dividend yield of 2% per annum. Consider a 100–strike European call and put, maturing in 9 months which currently sell for 11.71 and 5.31. Let the continuously compounded risk-free interest rate be denoted by r. Then,

(a) $0 \leq r < 0.05$
(b) $0.05 \leq r < 0.10$
(c) $0.10 \leq r < 0.15$
(d) $0.15 \leq r < 0.20$
(e) None of the above.

Problem 3.4. The initial price of a non-dividend-paying stock is 55 per share. A 6–month, at-the-money call option is trading for 1.89. Let the interest rate be $r = 0.065$. Find the price of the European put with the same strike, expiration and the underlying asset.

(a) 0.05
(b) 0.13
(c) 0.56
(d) 0.88
(e) None of the above
Problem 3.5. A stock currently sells for $32.00. A 6-month European call option with strike $35.00 has a premium of $2.27. Assuming a 6% continuous dividend yield and the continuously compounded, risk-free interest rate of 4%, what is the price of the otherwise identical put option as dictated by put-call parity?

(a) $5.05
(b) $5.13
(c) $5.52
(d) $5.88
(e) None of the above

Problem 3.6. A stock currently sells for $32.00. A 6-month European call option with a strike of $30.00 has a premium of $4.29, and the otherwise identical put has a premium of $2.64. Assume a 4% continuously compounded, risk-free rate. What is the net present value of the dividends payable over the next 6 months?

(a) $0.05
(b) $0.13
(c) $0.52
(d) $0.94
(e) None of the above

Problem 3.7. Source: Problem #2 from the Sample FM(DM) questions.

You are given the following information:

1. The current price to buy one share of XYZ stock is 500.
2. The stock does not pay dividends.
3. The risk-free interest rate, compounded continuously, is 6%.
4. A European call option on one share of XYZ stock with a strike price of K that expires in one year costs $66.59.
5. A European put option on one share of XYZ stock with a strike price of K that expires in one year costs $18.64.

Determine the strike price K.

(a) $449
(b) $452
(c) $480
(d) $559
(e) None of the above.

3.2. **Replicating portfolios.** Provide your complete solution to the following problem:

Problem 3.8. (5 points) Complete the following definition:

We say that a portfolio is a replicating portfolio for a certain European-style derivative security if: ...
Problem 3.9. Denote the continuously compounded interest rate by r. Let $V_{CC}(0)$ denote the price of a cash call on the asset S with strike K and exercise date T. Let $V_{CP}(0)$ denote the price of a cash put on the asset S with strike K and exercise date T. Then,

$$V_{CC}(0) + V_{CP}(0) =$$

(a) e^{-rT}
(b) 1
(c) e^{rT}
(d) $F_{0,T}^S(S)$
(e) None of the above

Problem 3.10. Denote the continuously compounded interest rate by r. Let $V_{AC}(0)$ denote the price of an asset call on the asset S with strike K and exercise date T. Let $V_{AP}(0)$ denote the price of an asset put on the asset S with strike K and exercise date T. Then, regardless of whether S pays dividends or not,

$$V_{AC}(0) + V_{AP}(0) =$$

(a) Ke^{-rT}
(b) $S(0)$
(c) $F_{0,T}(S)$
(d) $F_{0,T}^P(S)$
(e) None of the above

Problem 3.11. Which of the following statements does NOT accurately reflect the relationship between various derivative securities and “synthetic” forward contracts?

(a) Forward = stock – zero-coupon bond
(b) Zero-coupon bond = stock – forward
(c) Prepaid forward = forward – zero-coupon bond
(d) Stock = forward + zero-coupon bond
(e) All of the above are accurate.

3.3. Currency options. Provide your complete solution to the following problem(s):

Problem 3.12. (5 points) Suppose that the exchange rate is 0.95 USD per euro, and that the euro-denominated continuously compounded interest rate is 4%, while the dollar-denominated continuously compounded interest rate is 6%. The price of a 1-year 0.93-strike European call on the euro is $0.0571. What is the price of the corresponding European put?

Problem 3.13. (8 points) The price of a 6-month dollar denominated call option on the euro with a $0.90 strike is $0.0404. The price of an otherwise equivalent put option is $0.0141. Assume that for the dollar we have $r = 5\%$.

a. (5 pts) What is the 6-month dollar-euro forward price?

b. (3 pts) If the euro-denominated annual continuously compounded interest rate is 3.5%, what is the spot exchange rate?
Problem 3.14. (5 points) Assume that the current exchange rate is $1.3 per euro. The continuously compounded interest rate for the euro is 0.03, while continuously compounded interest rate for the USD is 0.04.

Let the price of an at-the-money USD-denominated European call on the euro with exercise date in 6 months be equal to 0.053.

What is the price of an at-the-money Euro-denominated put on the USD with the exercise date in 6 months?

3.4. **Chooser options.** Provide your **final answer** only for the following problems.

Problem 3.15. (2 points) The initial price of a chooser option is greater than or equal to the price of a regular European call on the same asset with the same strike and exercise date. **True or false?**

Problem 3.16. (5 points) Consider a chooser option on a stock S whose current price is $100 per share. Assume that we are using our usual notation, i.e., let $V_{CH}(0, t^*, T, K)$ denote the time−0 price of a chooser option with choice date t^*, exercise date T and strike price K. Then, the following inequality holds:

(a) $V_{CH}(0, t^*, T, K) \leq V_P(0, T, K)$
(b) $V_{CH}(0, t^*, T, K) \leq V_C(0, T, K)$
(c) $\max(V_P(0, T, K), V_C(0, T, K)) \leq V_{CH}(0, t^*, T, K)$
(d) $V_{CH}(0, t^*, T, K) < \max(V_P(0, T, K), V_C(0, T, K))$
(e) None of the above