- Bounds on European call/put prices
 - Understanding the behavior of option prices as functions of the strike
 - call prices are **DECREASING** w.r.t. the argument K
 - the arbitrage portfolio to use to show this is the **call bull spread**

- The put bull spread

The **PROFIT** curve is the same for the call bull spread and the put bull spread. So, usually we just say/use **bull spreads**.

Do this at home!
Q: What's the "original" use of bull spreads? Why would an investor be interested in acquiring a bull spread, if not merely for speculation?

Compare to insurance policies w/ both the deductible and an upper policy limit.
The (put) bull spread: \(K_1 < K_2 \)

- **SHORT** the \(K_1 \)-strike put
- **LONG** the \(K_2 \)-strike put

The (PUT) BULL SPREAD: \(K_1 - K_2 \)

- **LONG** the \(K_1 \)-strike put
- **SHORT** the \(K_2 \)-strike put

Compare the profits of the call bull spread and the put BEAR spread.
Monotonicity [cont'd].

PUTS. Let \(K_1 < K_2 \).

\[
\text{Payoff (} K_2 \text{-strike put)} \geq \text{Payoff (} K_1 \text{-strike put)}
\]

\[\Rightarrow V_p(K_1) \leq V_p(K_2)\]

In words: European put prices are increasing with respect to the strike.

Example. What if there exist \(K_1 < K_2 \) such that \(V_p(K_1) > V_p(K_2) \)?

I. **Suspicion.** ✓

II. Propose an arbitrage portfolio:
- **short** the \(K_1 \)-strike put
- **long** the \(K_2 \)-strike put

Recognize: this portfolio is the short version of the put bull spread.

It is actually called: **PUT BEAR SPREAD.**
Monotonicity [cont'd]

PUTS.

Let \(K_1 < K_2 \).

The two payoff functions are such that:

Payoff (\(K_2 \)-strike put) \[V_1 \]

Payoff (\(K_1 \)-strike put)

\[V_p(K_1) \leq V_p(K_2) \]

In words: European put prices are increasing with respect to the strike.

Example. What if there exist \(K_1 < K_2 \) such that \(V_p(K_1) > V_p(K_2) \) ?

I. Suspect that there's an arbitrage opportunity.

II. Construct a potential arbitrage portfolio:

- write the \(K_1 \)-strike put
- buy the \(K_2 \)-strike put

The name of this portfolio: a put (bear) spread
III. Verification

Initial Cost: \(V_p(K_2) - V_p(K_1) < 0 \)

\[\downarrow \]

Initial inflow of cash \(\uparrow \)

Payoff \(\geq 0 \)

\[\uparrow \]

Earlier today \(\downarrow \)

Profit \(> 0 \)

\[\Rightarrow \text{ARBITRAGE!} \]
Verification.

Initial cost: \(V_p(K_2) - V_p(K_1) \leq 0 \)

Initial inflow of cash \(\uparrow \)

Payoff

\(K_2 - K_1 \)

\(K_1 - K_2 \)

Profit > 0

\(\Rightarrow \) ARBITRAGE \(\uparrow \)
Cord-slope inequalities

We already know: \(K_1 < K_2 \)

\[
\begin{align*}
? & \geq \left\{ V_c(K_1) - V_c(K_2) \right\} \\
& \geq \left\{ V_p(K_2) - V_p(K_1) \right\}
\end{align*}
\]

Claim: The upper bound on both is \(PV_{0,T}(K_2 - K_1) \).

Example. Assume that, to the contrary, there are \(K_1 < K_2 \) such that

\[V_c(K_1) - V_c(K_2) > PV_{0,T}(K_2 - K_1) \]

I. Suspicion.

II. Construct a potential arbitrage portfolio.

\[V_c(K_1) > V_c(K_2) + PV_{0,T}(K_2 - K_1) \]

- **short** the \(K_1 \)-call
- **long** the \(K_2 \)-call

III. Verification.

Init. Cost: \(V_c(K_2) - V_c(K_1) \)

Payoff?
\[\text{Profit} = \text{Payoff} - FV_{0,T} \text{ (Init. Cost)} \]
\[\geq K_1 - K_2 + FV_{0,T} \left(-V_c(K_2) + V_c(K_1) \right) \]
\[\geq PV_{0,T}(K_2 - K_1) \]

\[\text{Profit} > K_1 - K_2 + (K_2 - K_1) = 0 \quad \Rightarrow \text{ARBITRAGE!} \]

Q: What if the inequality for put prices is violated? More precisely, what if there exist \(K_1 < K_2 \) such that

\[V_p(K_2) - V_p(K_1) > PV_{0,T}(K_2 - K_1) \]
Card-slope inequalities

We already know: IF \(K_1 < K_2 \), THEN

\[
\{ \begin{align*}
V_c(K_1) - V_c(K_2) \\
V_p(K_2) - V_p(K_1)
\end{align*} \} \geq 0
\]

Claim: The upper bound on both is: \(PV_{0,T}(K_2 - K_1) \).

Example. Assume that, to the contrary, there is a pair of strikes \(K_1 < K_2 \) such that

\[V_p(K_2) - V_p(K_1) > PV_{0,T}(K_2 - K_1). \]

\[\star \]

I. Suspect arbitrage. \(\checkmark \)

II. Construct a potential arbitrage portfolio:

- buy \(K_1 \)-strike put
- write \(K_2 \)-strike put

\[\text{put BULL spread.} \]

III. Verification.

Initial cost: \(V_p(K_1) - V_p(K_2) \)

Payoff \(\geq K_1 - K_2 \)
\[
\text{Profit} = \text{Payoff} - FV_{0,T} \text{(Initial Cost)} \\
\geq K_1 - K_2 + FV_{0,T} \left(V_p(K_1) + V_p(K_2) \right) - \underbrace{PV_{0,T}(K_2 - K_1)}_{>}
\]

\[
\text{Profit} > K_1 - K_2 + (K_2 - K_1) = 0
\]

\[
\Rightarrow \text{ARBITRAGE!}
\]

Q: What if the inequality for call prices is violated? More precisely, what if there exist \(k_1 < k_2 \) such that

\[
V_c(k_1) - V_c(k_2) > PV_{0,T}(k_2 - k_1)
\]
12. You are given:

(i) $C(K, T)$ denotes the current price of a K-strike T-year European call option on a nondividend-paying stock.

(ii) $P(K, T)$ denotes the current price of a K-strike T-year European put option on the same stock.

(iii) S denotes the current price of the stock.

(iv) The continuously compounded risk-free interest rate is r.

Which of the following is (are) correct?

(A) (I) only

(B) (II) only

(C) (III) only

(D) (I) and (II) only

(E) (I) and (III) only

Put-call Parity

$C(50, T) = P(50, T) + \frac{F_{0,T}}{e^{-rT}}(S) - 50e^{-rT} = S$

\[
= P(45, T) - P(50, T) - S + 50e^{-rT} + S
\]

\[
\leq 0
\]

\[
\leq 50e^{-rT}
\]

-5e^{-rT} \leq P(45, T) - P(50, T)

(III) is True