Futures Contracts

- Standardization ⇨ Futures contract more liquid ⇨ It's easier to buy/sell them. ⇨ We are confident of the "accuracy" of the observed futures price.
 ⇨ We can use futures contracts as an UNDERLYING ASSET for a call or a put.

- Credit risk alleviated by means of a MARGIN ACCOUNT.

Notional Value of the investment:

\[N = n \times \text{Size of Index} \times \text{Futures Price} \]

\[\uparrow \]

\[\# \text{ of futures contracts} \]

Margin Account(s)... think of it as a savings acct, i.e.,

- **Earnings Interest** (@ the prevailing interest rate \(r \))

Initial Margin... the amount which needs to be initially deposited into the margin acct; usually expressed as a percentage of \(N \)
Settlement Dates

\[B^s(t_{k+1}) \]

\[= B^s(t_k^-) \cdot e^{r(t_k-t_k^-)} \]

Left-hand limit

\[t_{k-1} \quad t_k \]

Right-hand limit

[The seller's perspective]

The effect of interest earned.

\[B^s(t_k) = B^s(t_k^-) - \eta \cdot \text{Size of Index} (F_{t_k,T} - F_{t_{k-1},T}) \]

Change in the Futures price!

MARKING TO MARKET

The Maintenance Margin:

The comfort zone boundary of your broker; i.e., the minimal balance in the margin account (s)he is willing to accept.

\[B^s(t_k^+) = \max(B^s(t_k), MM) \]

IF \(B^s(t_k) < MM \), THEN

a. MARGIN CALL IS MADE.
Options on Futures Contracts

Futures contracts w/ delivery date T_F.

Futures prices: F_{t,T_F} for $0 \leq t \leq T_F$

are observable quantities.

Most Common: CALLS and PUTS

Derivative Securities.

Exercise date for the option

A Call on a futures contract:

- On the date t at which the option is exercised:
 - the option’s holder acquires a LONG position in the futures contract;
 - receives the amount $\left(F_{t,T_F} - K \right)_+$

 the call option’s strike.
The maintenance margin: MM
\[B^s(t_k^+) = \max (B^s(t_k), MM) \]

IF \(B^s(t_k) < MM \), then a margin call is made.

Options on Futures Contract

Call

On the date \(t \) on which the option is exercised, the option’s holder:
* acquires a **LONG** position in the underlying futures contract
* receives the amount \((F_{t,T_F} - K)_+ \)

Put

* enters a **short** position in the underlying futures contract
* receive \((K - F_{t,T_F})_+ \)
A Put: • a short position in the futures contract, • receive the amt: \((K - F_{t,T_F})_+\)

For a pair of otherwise identical futures put/call, we have the put-call parity:

\[
V_c(0) - V_p(0) = F_{0,T}^P (\text{underlying}) - Ke^{-rT}
\]

the futures contract for delivery at time-\(T_F\).

Futures price = Forward price

\[
V_c(0) - V_p(0) = e^{-rT} (F_{0,T_F} - K)
\]

Mnemonic device: \(S \leftrightarrow r\)

\(\text{dividend yield} \leftrightarrow \text{continuously compounded, risk-free interest rate}\)

Q: What if the options are at-the-money?

\[
V_c(0) = V_p(0)
\]
Binomial pricing

... on futures on stocks

STOCK-PRICETREE / Futures (forward)-price tree

\[S(0) \]

\[S_u = u \cdot S(0) \]

\[S_d = d \cdot S(0) \]

\[F_{0,T_F} \]

\[S(0) \]

\[S(t) = S(t) e^{(r-s)(T_F-t)} \]

The no-arbitrage forward price \((t \leq T_F)\): \(F_{t,T_F}(S) = S(t) e^{(r-s)(T_F-t)} \)

In particular:

\[F_{0,T_F} = F_{0,T_F}(S) = S(0) e^{(r-s)T_F} \]

@ the up-node:

\[S_u \cdot e^{(r-s)(T_F-t)} = u \cdot S(0) e^{(r-s)T_F} \cdot e^{-(r-s)h} = F_{0,T_F} \]

\[= F_{0,T_F} \cdot u \cdot e^{-(r-s)h} \]

@ the down-node:

\[S_d \cdot e^{(r-s)(T_F-t)} = F_{0,T_F} \cdot d \cdot e^{-(r-s)h} \]

\[u_F \quad \text{... up factors for the futures-price tree} \]

\[d_F \quad \text{... down} \]
The risk-neutral probability:

\[p^* = \frac{e^{(r-g)h} - d}{u - d} = \frac{e^{(r-g)h} - d_F e^{(r-g)h}}{u_F e^{(r-g)h} - d_F e^{(r-g)h}} = \frac{1 - d_F}{u_F - d_F} \]
SAMPLE MFE

46. You are to price options on a futures contract. The movements of the futures price are modeled by a binomial tree. You are given:

(i) Each period is 6 months. \(\Delta = \frac{1}{2} \)
(ii) \(u/d = 4/3 \), where \(u \) is one plus the rate of gain on the futures price if it goes up, and \(d \) is one plus the rate of loss if it goes down.
(iii) The risk-neutral probability of an up move is 1/3.
(iv) The initial futures price is 80. \(F_{0,T_F} = 80 \)
(v) The continuously compounded risk-free interest rate is 5%. \(r = 0.05 \)

Let \(C_I \) be the price of a 1-year 85-strike European call option on the futures contract, and \(C_{II} \) be the price of an otherwise identical American call option.

Determine \(C_{II} - C_I \).

\[
\frac{1}{3} = p^* = \frac{1 - d_F}{u_F - d_F}
\]

\[
\frac{1}{3} = \frac{1 - d_F}{u_F - d_F}
\]

\[
\frac{1}{3} = \frac{1 - d_F}{u_F - d_F}
\]

(A) 0
(B) 0.022
(C) 0.044
(D) 0.066
(E) 0.088

1st The tree

2nd \(C_I = ? \), \(C_{II} = ? \) as usual

3rd \(C_{II} - C_I = \text{answer} \).
\[
\frac{1}{3} = p^* = \frac{1 - d_F}{u_F - d_F} \cdot \frac{d_F}{d_F} = \frac{1}{d_F} - 1
\]

\[
\frac{1}{d_F} - 1 = \frac{1}{q} \quad \Rightarrow \quad d_F = \frac{9}{10} \quad \Rightarrow \quad u_F = \frac{12}{10}
\]

The futures price tree:

\[
F_{0,T_F} = 80 \quad \leftarrow \quad 96 \quad \rightarrow \quad 115.20 \quad \leftarrow \quad 30.20
\]

\[
86.40 \quad \leftarrow \quad 72 \quad \rightarrow \quad \leftarrow \quad 85 \quad \rightarrow \quad 0
\]

Difference \(C_I^d - C_{II}^d = 0 \)

\(\left\langle k = 85 \quad \right\rangle \)

Price \(C_I \) and \(C_{II} \) \(\Rightarrow \) answer = \(C_{II} - C_I \)

Try to work efficiently (focus on the difference)!