The Binomial Asset-Pricing Model

Ambitious? Propose a stock-price model?

Examples.

Purpose: PRICING OPTIONS on the STOCK.

\[S(T) \sim N(\text{mean} = \mu, \text{var} = \sigma^2) \]... can be negative, so we would not use it outright.

\[S(T) \sim U(50, 150) \]

\[\text{pdf.} \]

\[50 \quad 150 \]

DISCRETE MODEL

A one-period binomial tree

\(T \): time horizon

\(S(T) \): stock price at time \(T \)

\(S(0) \): current (spot) asset price

\(S_u \) "up" node

\(S_d \) "down" node

The two possible values of \(S(T) \).
Usually: \[Su = u \cdot S(0) \] \quad u \text{... up factor}
\[Sd = d \cdot S(0) \] \quad d \text{... down factor}

Note: \[u = \frac{Su}{S(0)} = \frac{Su-S(0)}{S(0)} + 1 \]
\[d = \frac{Sd}{S(0)} = \frac{Sd-S(0)}{S(0)} + 1 \]

Assume \(r \)... continuously compounded, risk-free interest rate

STOCK-PRICE TREE

\[
\begin{array}{c}
S(0) \\
\downarrow \\
Su = u \cdot S(0) \text{ By convention } d < u \\
\text{risk-free investment} \\
Sd = d \cdot S(0) \\
\end{array}
\]

\[h \]

If \(S(0) \) is invested \(@ \) the risk-free rate \(r \),

THEN the balance \(@ \) time \(h \) is \(S(0)e^{rh} \).

We only work \(w/ \) continuous-dividend-paying stocks;
set \(\delta \)... dividend yield.

\# of \(\) shares owned \(@ \) time \(h \): \(e^{\delta h} \)

IF "up" : \(e^{\delta h} \cdot u \cdot S(0) \)

IF "down" : \(e^{\delta h} \cdot d \cdot S(0) \)

We suspect that the no-arbitrage condition is

\[e^{\delta h} d \leq e^{rh} \leq e^{\delta h} u \]

\[\iff \quad d \leq e^{(r-\delta)h} \leq u \]

The NO-ARBITRAGE condition for the binomial asset-pricing model.
Assume TO THE CONTRARY that
\[e^{(r-d)h} \leq d < u \]

I. Suspicion.

II. Construction of an arbitrage portfolio:
- Buy 1 share of stock.

III. Verification:
- Initial cost: \(S(0) \)
- Payoff: \(e^{\delta h} \cdot S(T) \)

IF "up": \(e^{\delta h} \cdot u \cdot S(0) - e^{\delta h} S(0) = (e^{\delta h} u - e^{\delta h}) S(0) > 0 \)

IF "down": \(e^{\delta h} \cdot d \cdot S(0) - e^{\delta h} S(0) = (e^{\delta h} d - e^{\delta h}) S(0) > 0 \)

ARBITRAGE PORTFOLIO.
The payoff of a derivative security is

\[V(T) = \psi(S(T)) = \psi(S(h)) \]

\[\text{PAYOFF FUNCTION} \]

\[\text{one period} \]

\[\Rightarrow T = h \]

Example. Let our derivative security be a call w/ strike \(K \)

\[\Rightarrow \psi(s) = (s-K)^+ \]

and \[V(T) = (S(T) - K)^+ \]

\[\text{DERIVATIVE SECURITY TREE} \]

\[\text{STOCK-PRICE TREE} \]

Knowing the dist’n of \(S(T) \) gives us full info about the dist’n of \(V(T) \).