Options on Currency/Exchange Rate

- Underlying asset ... "foreign currency" FC
- Asset price ... exchange rate from the FC to the "domestic" currency DC

 \[
 \begin{array}{c|c}
 \hline
 \text{DC} & \text{FC} \\
 \hline
 0.01 \$/\¥ & \text{e.g.} \\
 \hline
 \end{array}
 \]

 1 ¥ is worth $0.01.

Notation: \(x(t), t \geq 0 \)

↑ the exchange rate from FC to DC at time-\(t \)

Example. Simple investment in FC.

@ time-\(0 \):

- **Buy** 1 unit of FC
- → the initial cost in DC is \(x(0) \)
- **Deposit** the 1 unit of FC @ the "foreign" cont.-comp. risk-free interest rate \(r_F \)

@ time-\(T \):

- **Withdraw** the balance, i.e., \(e^{r_F T} \) units of FC
- **Exchange** this amt back to DC;

 \[
 \text{get: } x(T)e^{r_F T}
 \]

 rnd var.
Analogy:
cont-div-paying stocks \iff "foreign" currency
\[\delta \iff r_f \]
(dividend yield)

Example:
- Prepaid forward price:
 \[F_{0,T}^{P}(x) = x(0) e^{-r_f T} \]
- Forward price: cont.-compounded, risk-free interest rate for DC
 \[F_{0,T}(x) = x(0) e^{-\delta (\delta - r_f) T} \]
- European:
 - Payoff:
 - Call: \((x(T) - K)_+\)
 - Put: \((K - x(T))_+\) w/exercise date \(T\) and the strike price \(K\)
- Initial prices of the call/put
 \(V_c(0,x,K), V_p(0,x,K)\)

Put-call parity
\[V_c(0,x,K) - V_p(0,x,K) = x(0) e^{-r_f T} - Ke^{-\delta T} \]
Special Symmetry

\[V_c(t, x, K) \uparrow \text{strike price} \]
\[\uparrow \text{valuation date} \quad (0 \text{ or } T) \]
\[\uparrow \text{payoff} \]
\[\text{THE PAYOFF:} \]
\[V_c(T, x, K) = (x(T) - K)_+ \]
\[= x(T) \cdot K \cdot (\frac{1}{K} - \frac{1}{x(T)})_+ \]
\[\text{exchange rate } FC \rightarrow DC \text{ at time } T \]

\[V_c(T, x, K) = x(T) \cdot K \cdot V_p(T, \frac{1}{x}, \frac{1}{K}) \]

\[\downarrow \text{no arbitrage} \]

\[V_c(0, x, K) = x(0) \cdot K \cdot V_p(0, \frac{1}{x}, \frac{1}{K}) \]

\[\text{Put-call symmetry/duality} \]
\[V_p(0, x, K) = x(0) \cdot K \cdot V_c(0, \frac{1}{x}, \frac{1}{K}) \]