SLOPE INEQUALITIES

We know:

\[K_1 < K_2 \Rightarrow \begin{cases} V_c(K_1) - V_c(K_2) > 0 \text{ decreasing} \\ V_p(K_2) - V_p(K_1) \leq 0 \text{ increasing} \end{cases} \]

There is an upper bound on the change in the price:

\[\begin{cases} V_c(K_1) - V_c(K_2) \\ V_p(K_2) - V_p(K_1) \end{cases} \leq PV_{0,T}(K_2-K_1) \]

Example. Assume to the contrary that there are \(K_1 < K_2 \) such that

\[V_p(K_2) - V_p(K_1) > PV_{0,T}(K_2-K_1) \]

Propose an arbitrage portfolio:

\[\{ \begin{align*} &\text{LONG the } K_1\text{-put} \\ &\text{WRITE the } K_2\text{-put} \end{align*} \] i.e., ACQUIRE a PUT BULL SPREAD.

Initial cost:

\[V_p(K_1) - V_p(K_2) \leq PV_{0,T}(K_2-K_1) = PV_{0,T}(K_1-K_2) \]

Payoff:

\[(K_1 - S(T))_+ - (K_2 - S(T))_+ \geq K_1 - K_2 \]

Profit:

\[\text{PAYOFF} - \text{FV(Init. Cost)} > K_1 - K_2 + \text{FV}(PV(K_2 - K_1)) \]

\[= 0 \]

\[\Rightarrow \text{(strong) arbitrage} . \]
12. You are given:

(i) \(C(K, T) \) denotes the current price of a \(K \)-strike \(T \)-year European call option on a non-dividend-paying stock.
\[\Rightarrow F_{0,T}^P (S) = S(0) \]

(ii) \(P(K, T) \) denotes the current price of a \(K \)-strike \(T \)-year European put option on the same stock.

(iii) \(S \) denotes the current price of the stock.

(iv) The continuously compounded risk-free interest rate is \(r \).

Which of the following is (are) correct?

(I) \[0 \leq C(50, T) - C(55, T) \leq 5e^{-rT} \]
\[\Rightarrow \text{TRUE} \Rightarrow (\, \checkmark \,) \]

(II) \[50e^{-rT} \leq P(45, T) - C(50, T) + S \leq 55e^{-rT} \]

(III) \[45e^{-rT} \leq P(45, T) - C(50, T) + S \leq 50e^{-rT} \]

(A) (I) only

(B) (II) only

(C) (III) only

(D) (I) and (II) only

(E) (I) and (III) only

\[V_p(45) - V_c(50) + S(0) \]

\[V_c(50) = \sqrt{V_p(50) + S(0) - 50e^{-rT}} \]

\[45e^{-rT} \leq V_p(45) - V_p(50) + 50e^{-rT} \leq 50e^{-rT} \Rightarrow \text{III correct} \]

- \((50 - 45)e^{-rT} \)

- \(- (50 - 45)e^{-rT} \)

"slope" inequality

increase of put prices

Exam MFE: Spring 2009 - 12 - GO ON TO NEXT PAGE
Return to:

\[K_1 < K_2 \Rightarrow V_C(K_1) - V_C(K_2) \leq PV_{0,T}(K_2 - K_1) \]

Example. Assume to the contrary that there are \(K_1 < K_2 \) such that

\[V_C(K_1) - V_C(K_2) > PV_{0,T}(K_2 - K_1) \]

Propose an arbitrage portfolio:

- **SHORT** \(K_1 \)-strike call
- **LONG** \(K_2 \)-strike call

Payoff:

\[-(S(T) - K_1)_+ + (S(T) - K_2)_+ = \]

\[
\begin{cases}
\emptyset & \text{if } S(T) \leq K_1 \\
-(S(T) - K_1) = K_1 - S(T) & \text{if } K_1 < S(T) \leq K_2 \\
-(S(T) - K_1) + (S(T) - K_2) = K_1 - K_2 & \text{if } K_2 < S(T)
\end{cases}
\]
INITIAL COST: \[V_c(K_2) - V_c(K_1) < -PV(K_2-K_1) \]

PROFIT = \(\text{PAYOFF} - FV(\text{INIT. COST}) \) \(\geq K_1 - K_2 \) \(> FV(PV(K_2-K_1)) \) \(\Rightarrow \text{ARBITRAGE?} \)

Note: The BEAR spread is **short** with respect to the underlying. So, it's an appropriate HEDGE for a **LONG** position w/ respect to the underlying.

Put Bear spread.

PAYOFF

\[K_2 - K_1 \]

\(K_1 \) \(K_2 \)

\(\begin{cases} \text{Long } K_2\text{-strike put} \\ \text{Short } K_1\text{-strike put} \end{cases} \)

PUT-CALL PARITY

\[\text{PROFIT} (\text{Put bear spread}) = \text{PROFIT} (\text{Call bear spread}) \]

Q1: For the violation of which one of the above inequalities would you use the **PUT BEAR SPREAD** as an arbitrage portfolio?