2.1. **Collars in hedging.**

Definition 2.1. A **collar** is a financial position consisting of the purchase of a put option, and the sale of a call option with a higher strike price, with both options having the same underlying asset and having the same expiration date.

Problem 2.1. Sample FM (Derivatives Markets): Problem #3.

Happy Jalapeños, LLC has an exclusive contract to supply jalapeño peppers to the organizers of the annual jalapeño eating contest. The contract states that the contest organizers will take delivery of 10,000 jalapeños in one year at the market price. It will cost Happy Jalapeños 1,000 to provide 10,000 jalapeños and today’s market price is 0.12 for one jalapeño. The continuously compounded risk-free interest rate is 6%.

Happy Jalapeños has decided to hedge as follows (both options are one year, European):

1. buy 10,000 0.12-strike put options for 84.30, and
2. sell 10,000 0.14-strike call options for 74.80.

Happy Jalapeños believes the market price in one year will be somewhere between 0.10 and 0.15 per pepper. Which interval represents the range of possible profit one year from now for Happy Jalapeños?

A. 200 to 100
B. 110 to 190
C. 100 to 200
D. 190 to 390
E. 200 to 400

Solution: First, let’s see what position the Happy Jalapeños is in before the hedging takes place. Denote the market price of 1,000 peppers in one year by $S(T)$. This means that the Happy Jalapeños will spend $1000 for the peppers and receive $S(T)$ at delivery. So, their payoff will be $S(T) - 1000$. The graph of the payoff function is below.
Evidently, Happy Jalapeños might be worried about low market prices of the peppers at delivery time. So, they hedge using derivatives. Let us take a look at their hedge. In the graph below, the red line indicates the payoff of the short calls, while the blue line corresponds to the payoff of the long puts.

The combined hedge position is the sum of the two payoffs depicted in the next graph.

As we can see, the particular “insurance policy” Happy Jalapeños opted for is the **collar**. Once their original position is combined with the hedge, we get the total payoff shown in the next graph.
As we can see the payoff is bounded from below by 200 and from above by 400. This does not mean that we go ahead and choose the offered answer F. The question is about the profit bounds. The initial cost of the hedging position is

\[84.30 - 74.80 = 9.50. \]

Taking into account accrual of interest, the value at time−1 of this initial cost is

\[9.50e^{0.06} = 10.0874. \]

So, the profit lies within the interval \((200 - 10.0874, 400 - 10.0874)\). The appropriate answer is D.

Problem 2.2. Widget. Min and Max profit

Source: Dr. Jim Daniel (personal communication).

The future value in one year of the total costs of manufacturing a widget is $500. You will sell a widget in one year at its market price of \(S(1)\).

Assume that the annual effective interest rate equals 10%, and that the current price of the widget equals $520.

You now purchase a one-year, $572-strike put on one widget for a premium of $10. You sell some of the gain by writing a one-year, $600-strike call on one widget for a $3 premium.

What is the range of the profit of your hedged portfolio?

Solution: The payoff diagram for the above hedging situation is shown in Figure 1. The blue line corresponds to the unhedged position, the red line is the long-put payoff, the gold line is the short-call payoff, and the green line is the hedged portfolio payoff. As you can see, the range of the payoff is \([572, 600]\) (exactly the range between the two strikes!).

The future value of the total cost of both production and hedging is

\[500 + (10 - 3)(1 + 0.10) = 492.30. \]

So, the range of the profit equals \([64.30, 92.30]\).

Problem 2.3. Widget and verge.

Source: Dr. Jim Daniel (personal communication).

You plan to sell a widget in one year and your gain will be $500 − S(1), where \(S(1)\) denote the price of an item called the verge (needed to complete the widget).

Assume that the effective annual risk-free interest rate equals 10%.

INSTRUCTOR: Milica Ćudina
Your hedge consists of the following two components:

1. one long one-year, $450-strike call option on the verge whose premium is $3.00,
2. one written one-year, $420-strike put option on the verge whose premium is $10.00.

Calculate the profit of the hedged portfolio for the following two scenarios:

1. the time−1 price of the verge is $440,
2. the time−1 price of the verge is $475.

Solution: The hedged portfolio consists of the following components:

1. revenue from the verge sales,
2. one long one-year, $450-strike call option on the verge whose premium was $3.00,
3. one written one-year, $420-strike put option on the verge whose premium was $10.00.

The initial cost for this portfolio is the cost of hedging (all other accumulated production costs are incorporated in the revenue expression $500 − S(1))

\[(3 − 10) \times 1.10 = −7.7.\]

As usual, the negative initial cost signifies an initial influx of money for the investor.

In general, the profit expression is:

\[500 − S(1) + (S(1) − 450)_{+} − (420 − S(1))_{+} + 7.7.\]

So, we get the following profits in the two scenarios:

1. the time−1 price of the verge is $440:
 \[500 − 440 + (440 − 450)_{+} − (420 − 440)_{+} + 7.7 = 67.70.\]
2. the time−1 price of the verge is $475:
 \[500 − 440 + (440 − 450)_{+} − (420 − 440)_{+} + 7.7 = 57.70.\]

Remark 2.2. We see above that the user/buyer of goods uses a short collar to hedge.

Problem 2.4. Sample FM (Derivatives Markets): Problem #43.

You are given:

• An investor short-sells a non-dividend paying stock that has a current price of $44 per share.
This investor also writes a collar on this stock consisting of a $40-strike European put option and a $50-strike European call option. Both options expire in one year.

- \(V_P(0, 40) = 2.47 \)
- \(V_C(0, 50) = 3.86 \)
- The continuously compounded risk-free interest rate is 5%.
- Assume there are no transaction costs.

Calculate the maximum profit for the overall position at expiration.

A. $2.61
B. $3.37
C. $4.79
D. $5.21
E. $7.39

Solution: C.

According to our work so far, the maximum profit of the hedged position is attained for the final stock prices below the put option’s strike price. So, we can calculate our answer most easily at \(s = 0 \)

\[
-40 + (44 + 2.47 - 3.86) e^{0.05} = 4.79466
\]

Note: Compare our (short) solution to the “official” (lengthy!) one.

2.2. Zero-cost collars.

Problem 2.5. Sample FM (Derivatives Markets): Problem #1.

Determine which statement about zero-cost purchased collars is FALSE.

A. A zero-width, zero-cost collar can be created by setting both the put and call strike prices at the forward price.
B. There are an infinite number of zero-cost collars.
C. The put option can be at-the-money.
D. The call option can be at-the-money.
E. The strike price on the put option must be at or below the forward price.

Solution:

Let’s consider a continuous-dividend-paying stock. If it is the case that \(r = \delta \), then \(F_{0,T}(S) = S(0) \). Then, we have a zero-cost, zero-width collar made out of at-the-money options. So, A., C., D., E. can be discarded as the answers to submit.

To convince ourselves that B. is also correct, we just need to consider the following graph of both call and put prices as functions of the strike price:
2.3. **Ratio spreads.** A *ratio spread* is a financial position consisting of the following components:

- *m long* calls with strike K_1, and
- *n short* calls with strike K_2, and

with $K_1 < K_2$, m and n being positive constants, and the options being otherwise identical. Equivalent (in the sense of equal profit) ratio spreads can be constructed using put options only.

Problem 2.6. Provide an alternative name for the ratio spread in which $n = m = 1$.

Solution: Call bull spread.

Problem 2.7. Assume that $m < n$. Is the corresponding ratio spread a long or a short position with respect to the underlying?

Solution: It is **neither**.

Problem 2.8. Assume that $m > n$. Is the corresponding ratio spread a long or a short position with respect to the underlying?

Solution: It is a **long** position with respect to the underlying.

Problem 2.9. Which of the following statements is/are **incorrect**?

(a) The payoff of a call bull spread is always nonnegative.
(b) The payoff of a ratio spread is always positive.
(c) The payoff of a straddle is never negative.
(d) The payoff of a put bear spread is never negative.
(e) None of the above.

Solution: (b), (d)

Problem 2.10. Sample FM (Derivatives Markets): Problem #39.

Determine which of the following strategies creates a ratio spread, assuming all options are European.

A. Buy a one-year call, and sell a three-year call with the same strike price.
B. Buy a one-year call, and sell a three-year call with a different strike price.
C. Buy a one-year call, and buy three one-year calls with a different strike price.
D. Buy a one-year call, and sell three one-year puts with a different strike price.

E. Buy a one-year call, and sell three one-year calls with a different strike price.

Solution: E.

2.4. **Box spreads.** Box spreads are positions consisting of a pair of a long “synthetic” forward and an otherwise identical short “synthetic” forward with a higher strike. It is meant to mimic a risk-less investment. In practice it is impractical and rarely used due to comparably large transaction costs.

Problem 2.11. Sample FM (Derivatives Markets): Problem #55.

Box spreads are used to guarantee a fixed cash flow in the future. Thus, they are purely a means of borrowing or lending money, and have no stock price risk.

Consider a box spread based on two distinct strike prices \((K, L)\) that is used to lend money, so that there is a positive cost to this transaction up front, but a guaranteed positive payoff at expiration.

Determine which of the following sets of transactions is equivalent to this type of box spread.

A. A long position in a \((K, L)\) bull spread using calls and a long position in a \((K, L)\) bear spread using puts.

B. A long position in a \((K, L)\) bull spread using calls and a short position in a \((K, L)\) bear spread using puts.

C. A long position in a \((K, L)\) bull spread using calls and a long position in a \((K, L)\) bull spread using puts.

E. A short position in a \((K, L)\) bull spread using calls and a short position in a \((K, L)\) bull spread using puts.

Solution: A.