Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points.
Time: 50 minutes

TRUE/FALSE

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MULTIPLE CHOICE

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (5)</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>9 (5)</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
1.1. DEFINITIONS.

Problem 1.1. (10 points) Write the definition of an arbitrage portfolio.

Solution:
See the homework solutions.

1.2. TRUE/FALSE QUESTIONS. Please, circle the correct answer on the front page of this exam.

Problem 1.2. A covered call consists of a written call and long underlying asset.

Solution: TRUE

1.3. FREE-RESPONSE PROBLEMS.

Problem 1.3. (20 points) Suppose that the current price of a dividend-paying stock equals $100. Let \(r = 0.05 \) and \(\delta = 0.03 \). You notice that a forward price for delivery of this stock in two-years equals \(F = $110 \). You suspect that this forward price creates an arbitrage opportunity.

Construct an arbitrage portfolio which consists of taking a position in the forward contract, purchase or short-sale of the underlying asset, and borrowing/lending at the risk-free interest rate.

Solution: The forward price based on the initial stock price, \(r \) and \(\delta \) equals

\[
F_{0,T}(S) = S(0)e^{(r-\delta)T} = 100e^{(0.05-0.03)\cdot 2} \approx 104.08 < F = 110.
\]

The conclusion is that the observed forward price is “too high”. One way to exploit this arbitrage opportunity would be to do the following:

1. engage in the short forward contract,
2. borrow \(S(0)e^{-\delta T} \) at the risk free rate to be repaid at time \(T \),
3. use the above loan to buy \(e^{-\delta T} \) shares of stock.

So, the initial cost of this portfolio is zero.

During the time period \((0,T]\), all of the continuously paid dividends are automatically reinvested in the asset \(S \). So, at the end, one share of stock is owned. If we want to, we can deliver it to fulfill the forward contract. Thus, at time–\(T \), the payoff is

\[
-(S(T) - F) + S(T) - e^{(r-\delta)T}S(0) > 0.
\]

The portfolio we constructed is, indeed, an arbitrage portfolio.
1.4. **MULTIPLE CHOICE QUESTIONS.** Please, circle the correct answer on the front page of this exam.

Problem 1.4. (5 points) The premium on a 2-month call option on the market index with an exercise price of 1050 is $9.30 when originally purchased. After 2 months the position is closed and the index spot price is 1072. If interest rates are 0.5% effective per month, what is the call’s profit?

(a) $9.30
(b) $9.39
(c) $12.61
(d) $22.00
(e) None of the above.

Solution: (c)

The value at expiration of the cost of the call is $9.30 \times 1.005^2 \approx 9.39.

The payoff of the call is 1072 − 1050 = 22.

So the profit is 22 − 9.39 = 12.61.

Problem 1.5. (5 points) The spot price of the market index is $900. After 3 months the market index is priced at $940.

An investor has a long call option on the index at a strike price of $930. After 3 months what is the investors payoff?

(a) $10 loss
(b) $0
(c) $10 gain
(d) $20 gain
(e) None of the above.

Solution: (c)

In our usual notation, the payoff is

\[(S(T) - K)_+ = (940 - 930)_+ = 10.\]

Problem 1.6. The initial price of the market index is $900. After 3 months the market index is priced at $960. The effective monthly rate of interest is 1.0%.

The premium on the long put, with a strike price of $975, is $10.00. What is the profit at expiration for this long put?

(a) $2.00 loss
(b) $4.70 loss
(c) $4.70 gain
(d) $2.00 gain
(e) None of the above.
Solution: (c)
The profit is

\[(K - S(T))_+ - FV_{0,T}[V_P(0)] = (K - S(T))_+ - FV_{0,T}[V_P(0)]
\]
\[= (975 - 960)_+ - 10(1 + 0.01)^3
\]
\[= 4.70.
\]

Problem 1.7. The current price of the market index is $900. The continuously compounded risk-free interest rate is 4.8%. After 3 months the market index is priced at $920. What is the profit for the writer of the $930-strike, three-month call option if the time-0 option premium equals $2.00?

(a) About $12.02 loss
(b) About $2.02 loss
(c) About $2.02 gain
(d) About $12.02 gain
(e) None of the above.

Solution: The option is not exercised, so the profit is

\[2e^{0.048/4} = 2.02
\]

Problem 1.8. (5 points) A non-dividend-paying stock sells for $100 per share today. The one-year forward price is $110. You short sell the stock and close the short sale in exactly one year. Find your profit if the stock’s spot price in one year equals $130 per share.

(a) 20 loss
(b) 20 gain
(c) 30 loss
(d) 30 gain
(e) None of the above.

Solution: (a)
Because the stock pays no dividends, we have that \(FV_{0,T}(S(0)) = F_{0,T}(S)\). So, the profit equals

\[-S(1) - FV_{0,1}(-S(0)) = -S(1) + F_{0,1}(S) = -130 + 110 = -20.
\]
Problem 1.9. A market index is currently trading at $1,000. Which of the following options is/are in the money? More than one answer can be true. You get the credit if you circled all acceptable answers and none of the incorrect ones.

(a) $1,500-strike put
(b) $900-strike put
(c) $1,250 strike call
(d) $950 strike call
(e) None of the above.

Solution: (a) and (d)