$S(0)$, $S(t)$, $S(T)$

$0 \quad t \quad T$

$\{S(t), 0 \leq t \leq T\}$

Payoff function of the derivative security

Payoff

E.G. ν ... excess above the strike price (if any) on the exercise date

EARLY EXERCISE

Case #1:

The only admissible exercise date is T. \Rightarrow EUROPEAN

Case #2:

Any time prior to T is admissible exercise date. \Rightarrow AMERICAN

Expiration date

Case #3:

A subset of dates prior to T contains all admissible exercise dates \Rightarrow BERMUDAN
The simplest bet: COIN TOSSES

One trajectory of the stock price.

DIGITAL OPTIONS

K...fixed strike/trigger price

<table>
<thead>
<tr>
<th>"reward"</th>
<th>"win"</th>
<th>S(T)≥K</th>
<th>S(T)<K</th>
</tr>
</thead>
<tbody>
<tr>
<td>cash ($1)</td>
<td>CASH CALL</td>
<td>CASH PUT</td>
<td></td>
</tr>
<tr>
<td>asset (1 unit)</td>
<td>ASSET CALL</td>
<td>ASSET PUT</td>
<td></td>
</tr>
</tbody>
</table>

→ cash-or-nothing

→ asset-or-nothing

Option PRICING needs the payoff structure?!

CASH CALL

- Payoff

V_{CC}(T) = \mathbb{I}_{\{S(T)≥K\}}

Indicator random variable:

\[\mathbb{I}_A = \begin{cases} 1 & \text{A happened} \\ 0 & \text{A did not happen} \end{cases} \]

\[\mathbb{I}_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases} \]
The payoff function

\[\psi_C (S) = \mathbb{I}_{[K,\infty)} (S) \]

the final stock price

The Payoff curve

Indicator function:

\[\mathbb{I}_B (x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases} \]

B a set in the reals

\[\text{nondecreasing} \Rightarrow \text{Long position with respect to the underlying.} \]

\(S \) (final asset price)