Warm-up Worksheet #2
Review of options and forwards.

In preparation for the next class, please solve the following problems:

Problem 2.1. (5 points) For a continuous-dividend-paying asset whose price is denoted by \(S = \{ S(t), t \geq 0 \} \) with the dividend yield \(\delta \), what is the expression for:

(i) (2 points) the **prepaid-forward** price for delivery of one unit of the asset at time \(-T\);

(ii) (3 points) the **forward** price for delivery of one unit of the asset at time \(-T\)

Solution:

\[
F^{P}_{0,T}(S) = e^{-\delta T} S(0), \quad F_{0,T}(S) = e^{(r-\delta)T} S(0).
\]

Problem 2.2. (4 points) Consider an asset with the price is denoted by \(S = \{ S(t), t \geq 0 \} \).

(2 points) What is the expression for the **payoff** of a long \(K \)-strike European call on that asset with exercise date \(T \)?

Solution:

\[
V_C(T) = (S(T) - K)_{+}
\]

(2 points) What is the expression for the **payoff** of a long \(K \)-strike European put on that asset with exercise date \(T \)?

Solution:

\[
V_P(T) = (K - S(T))_{+}
\]

Problem 2.3. (6 points)

Consider an asset with the price is denoted by \(S = \{ S(t), t \geq 0 \} \).

Portfolio \(A \) consists of the following components:

- a long \(K \)-strike European call on \(S \) with exercise date \(T \), and
- a short \(K \)-strike European put on \(S \) with exercise date \(T \).

Draw the payoff curve of the above portfolio.

Solution:

Consider an asset with the price is denoted by \(S = \{ S(t), t \geq 0 \} \).

Portfolio \(A \) consists of the following components:

- a long \(K \)-strike European call on \(S \) with exercise date \(T \), and
- a short \(K \)-strike European put on \(S \) with exercise date \(T \).

Draw the payoff curve of the above portfolio.

Instructor: Milica Ćudina