On Market-Making and Delta-Hedging

1. Market Makers

2. Market-Making and Bond-Pricing
What to market makers do?

- Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
- Generate **inventory** as needed by short-selling
- **Profit** by charging the bid-ask spread
- Their position is **determined** by the order flow from customers
- In contrast, **proprietary trading** relies on an investment strategy to make a profit
Delta neutral

- Stock will have the value of its Delta equal to zero - we say it is delta neutral.
- The portfolio which contains the option, along with \(AC \) shares of the underlying stock

The replicating portfolio will always contain \(AC \) shares of the underlying stock.

\[
\frac{S_0}{C_0} = \forall
\]

Recall the meaning of Delta.

- The largest part of the risk comes from the price movements of asset \(S \) - which is reflected in the delta of the option, i.e., if \(C \) is the asset \(S \) is most sensitive to the changes in the value of \(S \).
- An option written on an underlying asset \(S \) is most sensitive to the

\(\forall \)
23. Consider a European call option on a nondividend-paying stock with exercise date \(T, T > 0 \). Let \(S(t) \) be the price of one share of the stock at time \(t, t \geq 0 \). For \(0 \leq t \leq T \), let \(C(s, t) \) be the price of one unit of the call option at time \(t \), if the stock price is \(s \) at that time. You are given:

(i) \[\frac{dS(t)}{S(t)} = 0.1 dt + \sigma dZ(t) \], where \(\sigma \) is a positive constant and \(\{Z(t)\} \) is a Brownian motion.

(ii) \[\frac{dC(S(t), t)}{C(S(t), t)} = \gamma(S(t), t)dt + \sigma C(S(t), t)dZ(t), \quad 0 \leq t \leq T \]

(iii) \(C(S(0), 0) = 6 \).

(iv) At time \(t = 0 \), the cost of shares required to delta-hedge one unit of the call option is 9.

(v) The continuously compounded risk-free interest rate is 4%.

Determine \(\gamma(S(0), 0) \).

(A) 0.10
(B) 0.12
(C) 0.13
(D) 0.15
(E) 0.16

\[\Delta \text{-hedge a call:} \]

\{
- call
- investment in the underlying asset; \# of shares \(N(t) \)
\}

THE ENTIRE PORTFOLIO IS \(\Delta \text{-NEUTRAL} \)

The worth of this portfolio, as a function of \(s \) is:

\[C(s, t) + N(t) \cdot s \]

\[\Delta \text{-neutral means: } \frac{\partial}{\partial s} C(s, t) + N(t) = 0 \]

\[\Rightarrow N(t) = -\Delta C(t) \]

Short shares!
Part (iv) \implies \text{cost of } \Delta\text{-hedging one written call is } q = \Delta_c(0) \cdot S(0)

Option elasticity: \[\Omega = \frac{\Delta \cdot S}{p} \]

↑ price

The call & the underlying asset are driven by the same std BM \implies their Sharpe ratios are equal:

\[
\frac{\alpha_s - r}{\sigma_s} = \frac{\gamma(s, t) - r}{\sigma_c(s, t)}
\]

\[
\text{constant: } \frac{\alpha_s - r}{\sigma_s} = \Omega_c = \frac{\Omega_c}{\sigma_c(s, t)}
\]

\[\gamma(s(0), 0) - r = \frac{\Omega_c}{0.04} (\alpha_s - r)\]

\[q = \frac{3}{2} \]

\[\frac{0.1 - 0.04}{0.04} = 0.13 \rightarrow C\]

\[\gamma(s(0), 0) = 0.04 + \frac{3}{2} (0.1 - 0.04) = 0.13 \rightarrow C\]
SAMPLE MFE

65. Assume the Black-Scholes framework.

You are given:

(i) \(S(t) \) is the time-\(t \) price of a stock, \(t \geq 0 \).

(ii) The stock pays dividends continuously at a rate proportional to its price.

(iii) Under the true probability measure, \(\ln(S(2)/S(1)) \) is a normal random variable with mean 0.10.

(iv) Under the risk-neutral probability measure, \(\ln(S(5)/S(3)) \) is a normal random variable with mean 0.06.

(v) The continuously compounded risk-free interest rate is 4%.

(vi) The time-0 price of a European put option on the stock is 10.

(vii) For delta-hedging at time 0 one unit of the put option with shares of the stock, the cost of stock shares is 20.

Calculate the absolute value of the time-0 continuously compounded expected rate of return on the put option.

(A) 4% \(\frac{S(t)}{S(0)} = S(0) e^{(\alpha - \delta - \frac{\sigma^2}{2})t + \sigma Z(t)} \)

(B) 5%

(C) 10% \(\ln \left[\frac{S(t+h)}{S(t)} \right] = (\alpha - \delta - \frac{\sigma^2}{2})h + \sigma [Z(t+h) - Z(t)] \)

(D) 11% \(\ln \left(\frac{S(t+h)}{S(t)} \right) \)

(E) 18%

\[\Rightarrow \mathbb{E} \left[\ln \left(\frac{S(t+h)}{S(t)} \right) \right] = (\alpha - \delta - \frac{\sigma^2}{2})h \]

\[\text{under } \mathbb{P}^* : \quad \mathbb{E}^* \left[\ln \left(\frac{S(t+h)}{S(t)} \right) \right] = (r - \delta - \frac{\sigma^2}{2})h \]
(iii) \((\alpha - \delta - \frac{\sigma^2}{2}) \cdot 1 = 0.1 \) \(\Rightarrow \alpha - (\delta + \frac{\sigma^2}{2}) = 0.1 \)
(iv) \((r - \delta - \frac{\sigma^2}{2}) \cdot 2 = 0.06 \)
(v) \(0.04 - (\delta + \frac{\sigma^2}{2}) = 0.03 \)
\(\Rightarrow \delta + \frac{\sigma^2}{2} = 0.01 \)
\(\alpha - r = 0.07 \)

\[\gamma_p (0) - r = \Omega_p (\alpha - r) \]

\[\Omega_p = \frac{\Delta_p (0) \cdot S (0)}{P (0)} \]

(vii) \(\frac{-20}{10} = -2 \)

\[\gamma_p (0) = 0.04 + (-2) (0.07) = -0.1 \] \(\Rightarrow \) C.

Just for laughs:

\[\gamma = 0.04 + 2 \cdot 0.07 = 0.18 \]

Exactly offered answer \(\Box \)
\[
\frac{dS(t)}{S(t)} = \alpha_s \, dt + \sigma_s \, dZ(t)
\]

\[
\frac{dV_p(t)}{V_p(t)} = \alpha_p(t) \, dt + \sigma_p(t) \, dZ(t)
\]

\[
\Omega \cdot \sigma_s
\]

- Positive Ω leads to positive correlation between the underlying and the option price.
- Negative Ω leads to negative correlation.

Introduce $Z_p = -Z_{stock}$.
Taylor-like expansions

\[W(t) \]... total worth of a portfolio at time-\(t \) in the market model \(W \):

\[\begin{cases}
\text{risky asset} &: w/S(t), t \geq 0 \text{ its price @ time-} t \\
\text{risk-free} &: \text{@ a constant, continuously compounded } \gamma
\end{cases} \]

\[\Rightarrow \] Derivative securities on \(S \) also available.

\[W(t + dt, S(t) + dS(t)) \approx W(t, S(t)) + \frac{\partial}{\partial t} W(t, S(t)) dt + \frac{\partial}{\partial S} W(t, S(t)) dS(t) + \frac{1}{2} \frac{\partial^2}{\partial S^2} W(t, S(t))(dS(t))^2 + \text{smaller/negligible terms} \]

\[W(t + dt, S(t) + dS(t)) \approx W(t, S(t)) + \Theta(t) dt + \Delta_w(t) dS(t) + \frac{1}{2} \Pi_w(t)(dS(t))^2 \]

Delta-Gamma-Theta Approximation.
If we exclude Θ, we get:

$$W(t+dt, s(t) + ds(t)) = W(t, s(t)) + \Delta w(t) ds(t) + \frac{1}{2} \Gamma w(t) (ds(t))^2$$

Delta-Gamma Approximation
19. Assume that the Black-Scholes framework holds. The price of a non-dividend-paying stock is $30.00. The price of a put option on this stock is $4.00.

You are given:

(i) $\Delta = -0.28$
(ii) $\Gamma = 0.10$

Using the delta-gamma approximation, determine the price of the put option if the stock price changes to $31.50.

\[
V_p(S(t) + dS(t)) \approx V_p(S(t)) + \Delta_p dS(t) + \frac{1}{2} \Gamma_p (dS(t))^2
\]

(A) 3.40
(B) 3.50
(C) 3.60
(D) $\boxed{3.70}$
(E) 3.80

\[
= \Gamma + (-0.28) \cdot (1.50) + \frac{1}{2} \cdot 0.10 \cdot (1.50)^2 = 3.69
\]

END OF EXAMINATION
Market maker: wrote a call;
Δ-hedges using a stock investment.

Q: What is the portfolio's value in terms of \(S(t) \) and \(t \)?

Q: What does our market maker do after a little bit of time (say, a day) has passed?