Problem 1.1. BDT tree from specified volatilities

Let the current effective annual spot rates be
\[r_0(0,1) = 0.04, \quad r_0(0,2) = 0.045, \quad r_0(0,3) = 0.05. \]

Additionally, we assume that the BDT tree is constructed under the assumption that the volatility of the annual effective one-year spot rates in one year is \(\sigma_1 = 0.08 \) and that the volatility of the annual effective one-year spot rates in two years is \(\sigma_2 = 0.10 \). Let us construct the complete BDT tree based on the above information.

Solution: See the lecture notes.

Problem 1.2. A call on a bond

Using the above BDT tree, let us find the price of a two-year, at-the-money call option on a three-year, zero-coupon bond redeemable for $1.

Solution: See the lecture notes.

Problem 1.3. Forward on a bond

Consider the following values of interest rates from an incomplete Black-Derman-Toy interest rate tree for the effective annual interest rates.

\[r_u = 0.35, \quad r_{uu} = 0.4, \quad r_d = 0.25, \quad r_{dd} = 0.20. \]

Let \(F \) denote the forward price for delivery at time \(-2\) of a zero-coupon bond redeemable at time \(-3\) for $1000. Then,

(a) \(0 \leq F < 757 \)
(b) \(757 \leq F < 767 \)
(c) \(767 \leq F < 857 \)
(d) \(857 \leq F < 915 \)
(e) None of the above.

Solution: (c)

As we have seen in class, the above forward price can be obtained as

\[F = 1000 \times \frac{P(0,3)}{P(0,2)} \]

where \(P(0,T) \) denotes the price of a zero-coupon bond redeemable at time \(-T\) for $1. Using the provided tree, we get

\[P(0,2) = \frac{1}{1 + r_0} \times \frac{1}{2} \times \left[\frac{1}{1 + r_u} + \frac{1}{1 + r_d} \right] \]

and

\[P(0,3) = \frac{1}{1 + r_0} \times \frac{1}{4} \times \left[\frac{1}{1 + r_u} \times \left(\frac{1}{1 + r_{uu}} + \frac{1}{1 + r_{ud}} \right) + \frac{1}{1 + r_d} \times \left(\frac{1}{1 + r_{dd}} + \frac{1}{1 + r_{ud}} \right) \right] \]

\[= \frac{1}{1 + r_0} \times \frac{1}{4} \times \left[\frac{1}{1 + r_u} \times \left(\frac{1}{1 + r_{uu}} + \frac{1}{1 + \sqrt{r_{uu} r_{dd}}} \right) + \frac{1}{1 + r_d} \times \left(\frac{1}{1 + r_{dd}} + \frac{1}{1 + \sqrt{r_{uu} r_{dd}}} \right) \right]. \]
So,
\[
F = 1000 \times \frac{1}{2} \times \left[\frac{1}{1+r_0} \times \left(\frac{1}{1+r_0} + \frac{1}{1+\sqrt{r_{uu}r_{dd}}} \right) + \frac{1}{1+r_d} \times \left(\frac{1}{1+r_d} + \frac{1}{1+\sqrt{r_{ud}r_{dd}}} \right) \right]
\]
\[
= 1000 \times \frac{1}{2} \times \left[\frac{1}{1.35} \times \left(\frac{1.4}{1+\sqrt{0.35 \times 0.2}} \right) + \frac{1.25}{1.35 + \frac{1}{1.25}} \right]
\]
\[
= 777.81.
\]

Problem 1.4. BDT caplet pricing
Consider the following values of interest rates from an incomplete Black-Derman-Toy interest rate tree for the **effective** annual interest rates.

\[r_0 = 0.09, \quad r_u = 0.12, \quad r_{uu} = 0.15,\]
\[r_d = 0.08, \quad r_{ud} = 0.13.\]

(i) (2 points) Find the volatility \(\sigma_1\) of the interest rates at time \(-1\).

(ii) (3 points) Find the interest rate \(r_{dd}\) missing from the tree.

(iii) (5 points) Consider a 3-year **caplet** for the notional amount of $100 whose cap rate is given to be 11.5%. Calculate its price.

Solution:

(i)
\[\sigma_1 = \frac{1}{2} \ln(0.12/0.08) = 0.202733.\]

(ii)
\[r_{dd} = \frac{r_{ud}^2}{r_{uu}} = \frac{0.13^2}{0.15} = 0.112667.\]

(iii)
\[100 \times \frac{1}{1.09} \times \frac{1}{4} \times \left[\frac{1}{1.15} \times \frac{1}{1.12} (0.15 - 0.115) + \frac{1}{1.13} \left(\frac{1}{1.12} + \frac{1}{1.08} \right) (0.13 - 0.115) \right] = 1.177.\]

Problem 1.5. Yield volatility
In a Black-Derman-Toy tree, the annual effective interest rates (in our usual notation) are given to be

\[r_0 = 0.05, \quad r_u = 0.06, \quad r_{uu} = 0.04, \quad r_d = 0.045, \quad r_{dd} = 0.04.\]

(i) (5 points) Calculate \(r_{ud}\).

(ii) (15 points) Compute the “volatility in year 1” of the 3-year zero-coupon bond generated by the tree.

Caveat: This is not the volatility of the effective interest rates in the tree at any single year!

Solution: Note: Compare this problem to the Sample MFE Problem #29.

(i)
\[r_{ud} = \sqrt{r_{uu} \cdot r_{dd}} = \sqrt{0.04 \cdot 0.06} = 0.049.\]

(ii) From the perspective of the up node, the bond from the problem has the price
\[P_u = \frac{1}{1+r_u} \times \frac{1}{2} \left[\frac{1}{1+r_{uu}} + \frac{1}{1+r_{ud}} \right].\]

Similarly, from the perspective of the down node, the bond from the problem has the price
\[P_d = \frac{1}{1+r_d} \times \frac{1}{2} \left[\frac{1}{1+r_{ud}} + \frac{1}{1+r_{dd}} \right].\]
We know that, in the notation used in class,

\[P[h, T, r(h)] = (1 + y[h, T, r(h)])^{-(T-h)}. \]

In the present problem, the above general equality translates to

\[P[1, 3, r(1)] = (1 + y[1, 3, r(1)])^{-2}. \]

So, the bond’s yield to maturity from the perspective of the up node is

\[y_u = (P_u)^{-1/2} - 1. \]

In the same way, the bond’s yield from the perspective of the down node is

\[y_d = (P_d)^{-1/2} - 1. \]

Let us temporarily denote the volatility in year 1 of the 3-year zero-coupon bond generated by the tree by \(\kappa \). Then, by definition and recalling that every period in the above tree is one year long, \(\kappa \) must satisfy

\[y_u = y_d e^{2\kappa} \iff \kappa = \frac{1}{2} \ln \left(\frac{y_u}{y_d} \right). \]

In the present problem,

\[P_u = 0.9032 \implies y_u = 0.0522, \]
\[P_d = 0.9162 \implies y_d = 0.0447. \]

So,

\[\kappa = \frac{1}{2} \ln \left(\frac{0.522}{0.447} \right) = \frac{1}{2} \ln \left(\frac{0.0522}{0.0447} \right) = 0.0776. \]