On Market-Making and Delta-Hedging

1 Market Makers

2 Market-Making and Bond-Pricing
On Market-Making and Delta-Hedging

1. Market Makers

2. Market-Making and Bond-Pricing
What to market makers do?

- Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
- Generate **inventory** as needed by short-selling
- **Profit** by charging the bid-ask spread
- Their position is determined by the order flow from customers
- In contrast, proprietary trading relies on an investment strategy to make a profit
What to market makers do?

• Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
• Generate **inventory** as needed by short-selling
• **Profit** by charging the bid-ask spread
• Their position is determined by the order flow from customers
• In contrast, proprietary trading relies on an investment strategy to make a profit
What to market makers do?

• Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
• Generate **inventory** as needed by short-selling
• **Profit** by charging the bid-ask spread
 • Their position is determined by the order flow from customers
 • In contrast, proprietary trading relies on an investment strategy to make a profit
What to market makers do?

• Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
• Generate **inventory** as needed by short-selling
• **Profit** by charging the bid-ask spread
• Their position is determined by the order flow from customers
• In contrast, **proprietary trading relies on an investment strategy to make a profit**
What to market makers do?

- Provide **immediacy** by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
- Generate **inventory** as needed by short-selling
- **Profit** by charging the bid-ask spread
- Their position is determined by the order flow from customers
- In contrast, proprietary trading relies on an investment strategy to make a profit
Market Maker Risk

- Market makers attempt to hedge in order to avoid the risk from their arbitrary positions due to customer orders (see Table 13.1 in the textbook)
 - Option positions can be hedged using delta-hedging
 - Delta-hedged positions should expect to earn risk-free return
Market Maker Risk

- Market makers attempt to hedge in order to avoid the risk from their arbitrary positions due to customer orders (see Table 13.1 in the textbook)
- Option positions can be hedged using delta-hedging
- Delta-hedged positions should expect to earn risk-free return
Market Maker Risk

- Market makers attempt to hedge in order to avoid the risk from their arbitrary positions due to customer orders (see Table 13.1 in the textbook)
- Option positions can be hedged using delta-hedging
- Delta-hedged positions should expect to earn risk-free return
Delta and Gamma as measures of exposure

- Suppose that Delta is 0.5824, when $S = 40$ (same as in Table 13.1 and Figure 13.1)
- A 0.75 increase in stock price would be expected to increase option value by 0.4368 (increase in price \times Delta $= 0.75 \times 0.5824$)
- The actual increase in the options value is higher: 0.4548
- This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price understates the actual change
- Similarly, using the original Delta overstates the change in the option value as a response to a stock price decline
- Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it's like adding another term in the Taylor expansion)
Delta and Gamma as measures of exposure

- Suppose that Delta is 0.5824, when $S = $40 (same as in Table 13.1 and Figure 13.1)
- A $0.75 increase in stock price would be expected to increase option value by $0.4368 (increase in price $ \times \Delta = 0.75 \times 0.5824$)
- The actual increase in the options value is higher: 0.4548
- This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price understates the actual change
- Similarly, using the original Delta overstates the change in the option value as a response to a stock price decline
- Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it's like adding another term in the Taylor expansion)
Delta and Gamma as measures of exposure

- Suppose that Delta is 0.5824, when $S = $40 (same as in Table 13.1 and Figure 13.1)
- A $0.75 increase in stock price would be **expected** to increase option value by $0.4368 ($0.75 \times 0.5824$)
- The **actual** increase in the options value is higher: 0.4548
- This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price **understates** the actual change
- Similarly, using the original Delta **overstates** the change in the option value as a response to a stock price **decline**
- Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it's like adding another term in the Taylor expansion)
Delta and Gamma as measures of exposure

- Suppose that Delta is 0.5824, when S = $40 (same as in Table 13.1 and Figure 13.1)
- A $0.75 increase in stock price would be expected to increase option value by $0.4368 (increase in price × Delta = $0.75 × 0.5824)
- The actual increase in the options value is higher: $0.4548
- This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price understates the actual change
- Similarly, using the original Delta overstates the change in the option value as a response to a stock price decline
- Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it’s like adding another term in the Taylor expansion)
Delta and Gamma as measures of exposure

- Suppose that Delta is 0.5824, when S = $40 (same as in Table 13.1 and Figure 13.1)
- A $0.75 increase in stock price would be expected to increase option value by $0.4368 (increase in price × Delta = $0.75 × 0.5824)
- The actual increase in the options value is higher: $0.4548
- This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price understates the actual change
- Similarly, using the original Delta overstates the change in the option value as a response to a stock price decline
- Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it's like adding another term in the Taylor expansion)
Delta and Gamma as measures of exposure

• Suppose that Delta is 0.5824, when S = $40 (same as in Table 13.1 and Figure 13.1)
• A $0.75 increase in stock price would be expected to increase option value by $0.4368 (increase in price \times \text{Delta} = 0.75 \times 0.5824)
• The \textbf{actual} increase in the options value is higher: $0.4548
• This is because the Delta increases as stock price increases. Using the smaller Delta at the lower stock price understates the actual change
• Similarly, using the original Delta overstates the change in the option value as a response to a stock price decline
• Using Gamma in addition to Delta improves the approximation of the option value change (Since Gamma measures the change in Delta as the stock price varies - it’s like adding another term in the Taylor expansion)
On Market-Making and Delta-Hedging

1 Market Makers

2 Market-Making and Bond-Pricing
• The Black model is a version of the Black-Scholes model for which the underlying asset is a futures contract
• We will begin by seeing how the Black model can be used to price bond and interest rate options
• Finally, we examine binomial interest rate models, in particular the Black-Derman-Toy model
• The Black model is a version of the Black-Scholes model for which the underlying asset is a futures contract
• We will begin by seeing how the Black model can be used to price bond and interest rate options
• Finally, we examine binomial interest rate models, in particular the Black-Derman-Toy model
• The Black model is a version of the Black-Scholes model for which the underlying asset is a futures contract
• We will begin by seeing how the Black model can be used to price bond and interest rate options
• Finally, we examine binomial interest rate models, in particular the Black-Derman-Toy model
A bond portfolio manager might want to hedge bonds of one duration with bonds of a different duration. This is called duration hedging. In general, hedging a bond portfolio based on duration does not result in a perfect hedge.

We focus on zero-coupon bonds (as they are components of more complicated instruments).
A bond portfolio manager might want to hedge bonds of one duration with bonds of a different duration. This is called duration hedging. In general, hedging a bond portfolio based on duration does not result in a perfect hedge.

We focus on zero-coupon bonds (as they are components of more complicated instruments).
The Dynamics of Bonds and Interest Rates

- Suppose that the bond-price at time \(T - t \) before maturity is denoted by \(P(t, T) \) and that it is modeled by the following Ito process:

\[
\frac{dP_t}{P_t} = \alpha(r, t) \, dt + q(r, t) \, dZ_t
\]

where

1. \(Z \) is a standard Brownian motion
2. \(\alpha \) and \(q \) are coefficients which depend both on time \(t \) and the interest rate \(r \)

- This approach requires careful specification of the coefficients \(\alpha \) and \(q \) - and we would like for the model to be simpler ...

- The alternative is to start with the model of the short-term interest rate as an Ito process:

\[
dr = a(r) \, dt + \sigma(r) \, dZ
\]

and continue to price the bonds by solving for the bond price
The Dynamics of Bonds and Interest Rates

- Suppose that the bond-price at time $T - t$ before maturity is denoted by $P(t, T)$ and that it is modeled by the following Ito process:

\[
\frac{dP_t}{P_t} = \alpha(r, t) \, dt + q(r, t) \, dZ_t
\]

where

1. Z is a standard Brownian motion
2. α and q are coefficients which depend both on time t and the interest rate r

- This approach requires careful specification of the coefficients α and q - and we would like for the model to be simpler ...

- The alternative is to start with the model of the short-term interest rate as an Ito process:

\[
dr = a(r) \, dt + \sigma(r) \, dZ
\]

and continue to price the bonds by solving for the bond price.
The Dynamics of Bonds and Interest Rates

- Suppose that the bond-price at time $T - t$ before maturity is denoted by $P(t, T)$ and that it is modeled by the following Ito process:

$$\frac{dP_t}{P_t} = \alpha(r, t) \, dt + q(r, t) \, dZ_t$$

where

1. Z is a standard Brownian motion
2. α and q are coefficients which depend both on time t and the interest rate r

- This approach requires careful specification of the coefficients α and q - and we would like for the model to be simpler ...

- The alternative is to start with the model of the short-term interest rate as an Ito process:

$$dr = a(r) \, dt + \sigma(r) \, dZ$$

and continue to price the bonds by solving for the bond price
An Inappropriate Bond-Pricing Model

- We need to be careful when implementing the above strategy.
- For instance, if we assume that the yield-curve is flat, i.e., that at any time the zero-coupon bonds at all maturities have the same yield to maturity, we get that there is possibility for arbitrage.
- The construction of the portfolio which creates arbitrage is similar to the one for different Sharpe Ratios and a single source of uncertainty. You should read Section 24.1.
An Inappropriate Bond-Pricing Model

• We need to be careful when implementing the above strategy.
• For instance, if we assume that the yield-curve is flat, i.e., that at any time the zero-coupon bonds at all maturities have the same yield to maturity, we get that there is possibility for arbitrage.
• The construction of the portfolio which creates arbitrage is similar to the one for different Sharpe Ratios and a single source of uncertainty. You should read Section 24.1.
An Inappropriate Bond-Pricing Model

- We need to be careful when implementing the above strategy.
- For instance, if we assume that the yield-curve is flat, i.e., that at any time the zero-coupon bonds at all maturities have the same yield to maturity, we get that there is possibility for arbitrage.
- The construction of the portfolio which creates arbitrage is similar to the one for different Sharpe Ratios and a single source of uncertainty. You should read Section 24.1
An Equilibrium Equation for Bonds

• When the short-term interest rate is the only source of uncertainty, the following partial differential equation must be satisfied by any zero-coupon bond (see equation (24.18) in the textbook)

\[
\frac{1}{2} \sigma(r)^2 \frac{\partial^2 P}{\partial r^2} + [\alpha(r) - \sigma(r) \phi(r, t)] \frac{\partial P}{\partial r} + \frac{\partial P}{\partial t} - rP = 0
\]

where

1. \(r \) denotes the short-term interest rate, which follows the Ito process

\[dr = a(r) dt + \sigma(r) dZ; \]

2. \(\phi(r, t) \) is the Sharpe ratio corresponding to the source of uncertainty \(Z \), i.e.,

\[\phi(r, t) = \frac{\alpha(r, t, T) - r}{q(r, t, T)} \]

with the coefficients \(P \cdot \alpha \) and \(P \cdot q \) are the drift and the volatility (respectively) of the Ito process \(P \) which represents the bond-price for the interest-rate \(r \).

• This equation characterizes claims that are a function of the interest rate (as there are no alternative sources of uncertainty).
An Equilibrium Equation for Bonds

- When the short-term interest rate is the only source of uncertainty, the following partial differential equation must be satisfied by any zero-coupon bond (see equation (24.18) in the textbook)

\[
\frac{1}{2} \sigma(r)^2 \frac{\partial^2 P}{\partial r^2} + [\alpha(r) - \sigma(r)\phi(r, t)] \frac{\partial P}{\partial r} + \frac{\partial P}{\partial t} - rP = 0
\]

where

1. \(r \) denotes the short-term interest rate, which follows the Ito process

 \[dr = a(r)dt + \sigma(r)dZ; \]

2. \(\phi(r, t) \) is the Sharpe ratio corresponding to the source of uncertainty \(Z \), i.e.,

 \[\phi(r, t) = \frac{\alpha(r, t, T) - r}{q(r, t, T)} \]

 with the coefficients \(P \cdot \alpha \) and \(P \cdot q \) are the drift and the volatility (respectively) of the Ito process \(P \) which represents the bond-price for the interest-rate \(r \)

- This equation characterizes claims that are a function of the interest rate (as there are no alternative sources of uncertainty).
The risk-neutral process for the interest rate

- The risk-neutral process for the interest rate is obtained by subtracting the risk premium from the drift:
 \[dr_t = [a(r_t) - \sigma(r_t)\phi(r_t, t)] dt + \sigma(r_t) dZ_t \]

- Given a zero-coupon bond, Cox et al. (1985) show that the solution to the equilibrium equation for the zero-coupon bonds must be of the form (see equation (24.20) in the textbook)
 \[P[t, T, r(t)] = \mathbb{E}^*[e^{-R(t, T)}] \]

where

1. \(\mathbb{E}^*_t \) represents the expectation taken with respect to risk-neutral probabilities given that we know the past up to time \(t \);
2. \(R(t, T) \) represents the cumulative interest rate over time, i.e., it satisfies the equation (see (24.21) in the book)
 \[R(t, T) = \int_t^T r(s) \, ds \]

- Thus, to value a zero-coupon bond, we take the expectation over “all the discount factors” implied by these paths.
The risk-neutral process for the interest rate

- The risk-neutral process for the interest rate is obtained by subtracting the risk premium from the drift:
 \[dr_t = [a(r_t) - \sigma(r_t)\phi(r_t, t)] \, dt + \sigma(r_t) \, dZ_t \]

- Given a zero-coupon bond, Cox et al. (1985) show that the solution to the equilibrium equation for the zero-coupon bonds must be of the form (see equation (24.20) in the textbook)
 \[P[t, T, r(t)] = \mathbb{E}_t^*[e^{-R(t, T)}] \]

where

1. \(\mathbb{E}_t^* \) represents the expectation taken with respect to risk-neutral probabilities given that we know the past up to time \(t \);
2. \(R(t, T) \) represents the cumulative interest rate over time, i.e., it satisfies the equation (see (24.21) in the book)
 \[R(t, T) = \int_t^T r(s) \, ds \]

- Thus, to value a zero-coupon bond, we take the expectation over “all the discount factors” implied by these paths.
The risk-neutral process for the interest rate

- The risk-neutral process for the interest rate is obtained by subtracting the risk premium from the drift:

$$dr_t = [a(r_t) - \sigma(r_t)\phi(r_t, t)] dt + \sigma(r_t) dZ_t$$

- Given a zero-coupon bond, Cox et al. (1985) show that the solution to the equilibrium equation for the zero-coupon bonds must be of the form (see equation (24.20) in the textbook)

$$P[t, T, r(t)] = \mathbb{E}_t^*[e^{-R(t, T)}]$$

where

1. \mathbb{E}_t^* represents the expectation taken with respect to risk-neutral probabilities given that we know the past up to time t;
2. $R(t, T)$ represents the cumulative interest rate over time, i.e., it satisfies the equation (see (24.21) in the book)

$$R(t, T) = \int_t^T r(s) ds$$

- Thus, to value a zero-coupon bond, we take the expectation over “all the discount factors” implied by these paths.
Summary

- One approach to modeling bond prices is exactly the same procedure used to price options on stock.
- We begin with a model of the interest rate and then use Ito’s Lemma to obtain a partial differential equation that describes the bond price - the equilibrium equation.
- Next, using the PDE together with boundary conditions, we can determine the price of the bond.
- In the present course, we skip the details - you will simply use the formulae that are the end-product of this strategy.
Summary

• One approach to modeling bond prices is exactly the same procedure used to price options on stock.

• We begin with a model of the interest rate and then use Ito’s Lemma to obtain a partial differential equation that describes the bond price - the equilibrium equation.

• Next, using the PDE together with boundary conditions, we can determine the price of the bond.

• In the present course, we skip the details - you will simply use the formulae that are the end-product of this strategy.
Summary

- One approach to modeling bond prices is exactly the same procedure used to price options on stock.
- We begin with a model of the interest rate and then use Ito’s Lemma to obtain a partial differential equation that describes the bond price - the equilibrium equation.
- Next, using the PDE together with boundary conditions, we can determine the price of the bond.
- In the present course, we skip the details - you will simply use the formulae that are the end-product of this strategy.
Summary

- One approach to modeling bond prices is exactly the same procedure used to price options on stock.
- We begin with a model of the interest rate and then use Ito’s Lemma to obtain a partial differential equation that describes the bond price - the equilibrium equation.
- Next, using the PDE together with boundary conditions, we can determine the price of the bond.
- In the present course, we skip the details - you will simply use the formulae that are the end-product of this strategy.