Option Greeks

1 Introduction
Introduction
Set-up

- **Assignment:** Read Section 12.3 from McDonald.
- We want to look at the option prices dynamically.
- **Question:** What happens with the option price if *one* of the inputs (parameters) changes?
- First, we give names to these effects of perturbations of parameters to the option price. Then, we can see what happens in the contexts of the pricing models we use.
• Assignment: Read Section 12.3 from McDonald.
• We want to look at the option prices dynamically.
 • **Question:** What happens with the option price if *one* of the inputs (parameters) changes?
• First, we give names to these effects of perturbations of parameters to the option price. Then, we can see what happens in the contexts of the pricing models we use.
• Assignment: Read Section 12.3 from McDonald.
• We want to look at the option prices dynamically.
• Question: What happens with the option price if *one* of the inputs (parameters) changes?
• First, we give names to these effects of perturbations of parameters to the option price. Then, we can see what happens in the contexts of the pricing models we use.
Assignment: Read Section 12.3 from McDonald.

We want to look at the option prices dynamically.

Question: What happens with the option price if one of the inputs (parameters) changes?

First, we give names to these effects of perturbations of parameters to the option price. Then, we can see what happens in the contexts of the pricing models we use.
Vocabulary
• \(\Psi \) is rarer and denotes the sensitivity to the changes in the dividend yield \(\delta \)
• *vega* is not a Greek letter - sometimes \(\lambda \) or \(\kappa \) are used instead
• The “prescribed” perturbations in the definitions above are problematic . . .
• It is more sensible to look at the Greeks as *derivatives* of option prices (in a given model)!
• As usual, we will talk about calls - the puts are analogous
• Ψ is rarer and denotes the sensitivity to the changes in the dividend yield δ

• *vega* is not a Greek letter - sometimes λ or κ are used instead

• The “prescribed” perturbations in the definitions above are problematic . . .

• It is more sensible to look at the Greeks as *derivatives* of option prices (in a given model)!

• As usual, we will talk about calls - the puts are analogous
• Ψ is rarer and denotes the sensitivity to the changes in the dividend yield δ
• *vega* is not a Greek letter - sometimes λ or κ are used instead
• The “prescribed” perturbations in the definitions above are problematic . . .
• It is more sensible to look at the Greeks as *derivatives* of option prices (in a given model)!
• As usual, we will talk about calls - the puts are analogous
Notes

• Ψ is rarer and denotes the sensitivity to the changes in the dividend yield δ

• vega is not a Greek letter - sometimes λ or κ are used instead

• The “prescribed” perturbations in the definitions above are problematic . . .

• It is more sensible to look at the Greeks as derivatives of option prices (in a given model)!

• As usual, we will talk about calls - the puts are analogous
• Ψ is rarer and denotes the sensitivity to the changes in the dividend yield δ
• vega is not a Greek letter - sometimes λ or κ are used instead
• The “prescribed” perturbations in the definitions above are problematic . . .
• It is more sensible to look at the Greeks as derivatives of option prices (in a given model)!
• As usual, we will talk about calls - the puts are analogous
The Delta: The binomial model

- Recall the replicating portfolio for a call option on a stock S: Δ shares of stock & B invested in the riskless asset.
- So, the price of a call at any time t was
 \[C = \Delta S + Be^{rt} \]
 with S denoting the price of the stock at time t
- Differentiating with respect to S, we get
 \[\frac{\partial}{\partial S} C = \Delta \]
- And, I did tell you that the notation was intentional ...
The Delta: The binomial model

- Recall the replicating portfolio for a call option on a stock S: Δ shares of stock & B invested in the riskless asset.
- So, the price of a call at any time t was

$$C = \Delta S + Be^{rt}$$

with S denoting the price of the stock at time t
- Differentiating with respect to S, we get

$$\frac{\partial}{\partial S} C = \Delta$$

- And, I did tell you that the notation was intentional ...
The Delta: The binomial model

• Recall the replicating portfolio for a call option on a stock S: Δ shares of stock & B invested in the riskless asset.

• So, the price of a call at any time t was

$$C = \Delta S + B e^{rt}$$

with S denoting the price of the stock at time t

• Differentiating with respect to S, we get

$$\frac{\partial}{\partial S} C = \Delta$$

• And, I did tell you that the notation was intentional ...
The Delta: The binomial model

- Recall the replicating portfolio for a call option on a stock S: Δ shares of stock & B invested in the riskless asset.
- So, the price of a call at any time t was

$$C = \Delta S + B e^{rt}$$

with S denoting the price of the stock at time t
- Differentiating with respect to S, we get

$$\frac{\partial}{\partial S} C = \Delta$$

- And, I did tell you that the notation was intentional ...
The Delta: The Black-Scholes formula

- The Black-Scholes call option price is

\[C(S, K, r, T, \delta, \sigma) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) \]

with

\[d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln\left(\frac{S}{K} \right) + (r - \delta + \frac{1}{2} \sigma^2) T \right], \quad d_2 = d_1 - \sigma \sqrt{T} \]

- Calculating the \(\Delta \) we get . . .

\[\frac{\partial}{\partial S} C(S, \ldots) = e^{-\delta T} N(d_1) \]

- This allows us to reinterpret the expression for the Black-Scholes price in analogy with the replicating portfolio from the binomial model
The Delta: The Black-Scholes formula

• The Black-Scholes call option price is

\[C(S, K, r, T, \delta, \sigma) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) \]

with

\[d_1 = \frac{1}{\sigma \sqrt{T}} [\ln(S/K) + (r - \delta + \frac{1}{2} \sigma^2) T], \quad d_2 = d_1 - \sigma \sqrt{T} \]

• Calculating the \(\Delta \) we get . . .

\[\frac{\partial}{\partial S} C(S, \ldots) = e^{-\delta T} N(d_1) \]

• This allows us to reinterpret the expression for the Black-Scholes price in analogy with the replicating portfolio from the binomial model
The Delta: The Black-Scholes formula

- The Black-Scholes call option price is

\[C(S, K, r, T, \delta, \sigma) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) \]

with

\[d_1 = \frac{1}{\sigma \sqrt{T}} [\ln(S/K) + (r - \delta + \frac{1}{2} \sigma^2) T], \quad d_2 = d_1 - \sigma \sqrt{T} \]

- Calculating the \(\Delta \) we get . . .

\[\frac{\partial}{\partial S} C(S, \ldots) = e^{-\delta T} N(d_1) \]

- This allows us to reinterpret the expression for the Black-Scholes price in analogy with the replicating portfolio from the binomial model.
The Delta: The Black-Scholes formula

- The Black-Scholes call option price is

\[C(S, K, r, T, \delta, \sigma) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) \]

with

\[d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln\left(\frac{S}{K} \right) + (r - \delta + \frac{1}{2} \sigma^2) T \right], \quad d_2 = d_1 - \sigma \sqrt{T} \]

- Calculating the \(\Delta \) we get . . .

\[\frac{\partial}{\partial S} C(S, \ldots) = e^{-\delta T} N(d_1) \]

- This allows us to reinterpret the expression for the Black-Scholes price in analogy with the replicating portfolio from the binomial model
The Gamma

- Regardless of the model - due to put-call parity - Γ is the same for European puts and calls (with the same parameters)

- In general, one gets Γ as
 \[
 \frac{\partial^2}{\partial S^2} C(S, \ldots) = \ldots
 \]

- In the Black-Scholes setting
 \[
 \frac{\partial^2}{\partial S^2} C(S, \ldots) = \frac{e^{-\delta T - 0.5d_1^2}}{S\sigma\sqrt{2\pi T}}
 \]

- If Γ of a derivative is positive when evaluated at all prices S, we say that this derivative is convex
The Gamma

- Regardless of the model - due to put-call parity - Γ is the same for European puts and calls (with the same parameters)
- In general, one gets Γ as
 \[\frac{\partial^2}{\partial S^2} C(S, \ldots) = \ldots \]
- In the Black-Scholes setting
 \[\frac{\partial^2}{\partial S^2} C(S, \ldots) = \frac{e^{-\delta T - 0.5d_1^2}}{S\sigma\sqrt{2\pi T}} \]
- If Γ of a derivative is positive when evaluated at all prices S, we say that this derivative is convex
The Gamma

• Regardless of the model - due to put-call parity - \(\Gamma \) is the same for European puts and calls (with the same parameters)

• In general, one gets \(\Gamma \) as

\[
\frac{\partial^2}{\partial S^2} C(S, \ldots) = \ldots
\]

• In the Black-Scholes setting

\[
\frac{\partial^2}{\partial S^2} C(S, \ldots) = \frac{e^{-\delta T - 0.5d_1^2}}{S\sigma\sqrt{2\pi T}}
\]

• If \(\Gamma \) of a derivative is positive when evaluated at all prices \(S \), we say that this derivative is convex
The Gamma

• Regardless of the model - due to put-call parity - Γ is the same for European puts and calls (with the same parameters)

• In general, one gets Γ as

$$\frac{\partial^2}{\partial S^2} C(S, \ldots) = \ldots$$

• In the Black-Scholes setting

$$\frac{\partial^2}{\partial S^2} C(S, \ldots) = \frac{e^{-\delta T - 0.5d_1^2}}{S \sigma \sqrt{2\pi T}}$$

• If Γ of a derivative is positive when evaluated at all prices S, we say that this derivative is **convex**
The Vega

- Heuristically, an increase in volatility of S yields an increase in the price of a call or put option on S
- So, since \(\text{vega} \) is defined as
 \[
 \frac{\partial}{\partial \sigma} C(\ldots, \sigma)
 \]
 we conclude that \(\text{vega} \geq 0 \)
- What is the expression for \(\text{vega} \) in the Black-Scholes setting?
The Vega

- Heuristically, an increase in volatility of S yields an increase in the price of a call or put option on S
- So, since *vega* is defined as
 \[
 \frac{\partial}{\partial \sigma} C(\ldots, \sigma)
 \]
 we conclude that $\text{vega} \geq 0$
- What is the expression for *vega* in the Black-Scholes setting?
The Vega

- Heuristically, an increase in volatility of S yields an increase in the price of a call or put option on S
- So, since vega is defined as
 \[
 \frac{\partial}{\partial \sigma} C(\ldots, \sigma)
 \]
 we conclude that $\text{vega} \geq 0$
- What is the expression for vega in the Black-Scholes setting?
Heuristically, an increase in volatility of S yields an increase in the price of a call or put option on S

So, since \(\text{vega} \) is defined as

\[
\frac{\partial}{\partial \sigma} C(\ldots, \sigma)
\]

we conclude that \(\text{vega} \geq 0 \)

What is the expression for \(\text{vega} \) in the Black-Scholes setting?
The Theta

- When talking about θ it is more convenient to write the parameters of the call option’s price as follows:

$$C(S, K, r, T - t, \delta, \sigma)$$

where $T - t$ denotes the time to expiration of the option.

- Then, θ can be written as

$$\frac{\partial}{\partial t} C(\ldots, T - t, \ldots)$$

- What is the expression for θ in the Black-Scholes setting?

- Caveat: It is possible for the price of an option to increase as time to expiration decreases.
The Theta

• When talking about θ it is more convenient to write the parameters of the call option’s price as follows:

$$C(S, K, r, T - t, \delta, \sigma)$$

where $T - t$ denotes the **time to expiration** of the option.

• Then, θ can be written as

$$\frac{\partial}{\partial t} C(\ldots, T - t, \ldots)$$

• What is the expression for θ in the Black-Scholes setting?

• *Caveat:* It is possible for the price of an option to increase as time to expiration decreases.
The Theta

• When talking about θ it is more convenient to write the parameters of the call option’s price as follows:

$$C(S, K, r, T - t, \delta, \sigma)$$

where $T - t$ denotes the **time to expiration** of the option.

• Then, θ can be written as

$$\frac{\partial}{\partial t} C(\ldots, T - t, \ldots)$$

• What is the expression for θ in the Black-Scholes setting?

• **Caveat:** It is possible for the price of an option to increase as time to expiration decreases.
The Theta

- When talking about \(\theta \) it is more convenient to write the parameters of the call option’s price as follows:

\[
C(S, K, r, T - t, \delta, \sigma)
\]

where \(T - t \) denotes the **time to expiration** of the option.

- Then, \(\theta \) can be written as

\[
\frac{\partial}{\partial t} C(\ldots, T - t, \ldots)
\]

- What is the expression for \(\theta \) in the Black-Scholes setting?

- **Caveat:** It is possible for the price of an option to increase as time to expiration decreases.
The Rho

- \(\rho \) is defined as

\[\frac{\partial}{\partial r} C(\ldots, r, \ldots) \]

- In the Black-Scholes setting,

\[\rho = KTe^{-rT} N(d_2) \]

- It is not accidental that \(\rho > 0 \) regardless of the values of the parameters: when a call is exercised, the strike price needs to be paid and as the interest rate increases, the present value of the strike decreases.

- In analogy, for a put, \(\rho < 0 \).
The Rho

- ρ is defined as
 $$\frac{\partial}{\partial r} C(\ldots, r, \ldots)$$

- In the Black-Scholes setting,
 $$\rho = KTE^{-rT}N(d_2)$$

- It is not accidental that $\rho > 0$ regardless of the values of the parameters: when a call is exercised, the strike price needs to be paid and as the interest rate increases, the present value of the strike decreases.

- In analogy, for a put, $\rho < 0$.
The Rho

- ρ is defined as
 \[\frac{\partial}{\partial r} C(\ldots, r, \ldots) \]
- In the Black-Scholes setting,
 \[\rho = K T e^{-rT} N(d_2) \]
- It is not accidental that $\rho > 0$ regardless of the values of the parameters: when a call is exercised, the strike price needs to be paid and as the interest rate increases, the present value of the strike decreases
 - In analogy, for a put, $\rho < 0$.
The Rho

• ρ is defined as

$$\frac{\partial}{\partial r} C(\ldots, r, \ldots)$$

• In the Black-Scholes setting,

$$\rho = K T e^{-rT} N(d_2)$$

• It is not accidental that $\rho > 0$ regardless of the values of the parameters: when a call is exercised, the strike price needs to be paid and as the interest rate increases, the present value of the strike decreases.

• In analogy, for a put, $\rho < 0$.
The Psi

- $Ψ$ is defined as

$$\frac{∂}{∂δ} C(\ldots, δ, \ldots)$$

- What is the expression for $Ψ$ in the Black-Scholes setting?
- You should get that $Ψ < 0$ for a put - regardless of the parameters. The reasoning justifying this is analogous to the one for $ρ$: when a call is exercised, the holder obtains shares of stock - but is not entitled to the dividends paid prior to exercise and, thus, the present value of the stock is lower for higher dividend yields.
- In analogy, for a put, $Ψ > 0$.

The Psi

- Ψ is defined as
 \[\frac{\partial}{\partial \delta} C(\ldots, \delta, \ldots) \]

- What is the expression for Ψ in the Black-Scholes setting?
 - You should get that $\Psi < 0$ for a put - regardless of the parameters. The reasoning justifying this is analogous to the one for ρ: when a call is exercised, the holder obtains shares of stock - but is not entitled to the dividends paid prior to exercise and, thus, the present value of the stock is lower for higher dividend yields.
 - In analogy, for a put, $\Psi > 0$.
The Psi

• Ψ is defined as
 \[\frac{\partial}{\partial \delta} C(\ldots, \delta, \ldots) \]

• What is the expression for Ψ in the Black-Scholes setting?
• You should get that $\Psi < 0$ for a put - regardless of the parameters. The reasoning justifying this is analogous to the one for ρ: when a call is exercised, the holder obtains shares of stock - but is not entitled to the dividends paid prior to exercise and, thus, the present value of the stock is lower for higher dividend yields
• In analogy, for a put, $\Psi > 0$.
The Psi

• Ψ is defined as

$$\frac{\partial}{\partial \delta} C(\ldots, \delta, \ldots)$$

• What is the expression for Ψ in the Black-Scholes setting?
• You should get that $\Psi < 0$ for a put - regardless of the parameters. The reasoning justifying this is analogous to the one for ρ: when a call is exercised, the holder obtains shares of stock - but is not entitled to the dividends paid prior to exercise and, thus, the present value of the stock is lower for higher dividend yields
• In analogy, for a put, $\Psi > 0$.
Option Elasticity (Black-Scholes)

- For a call, we have

$$S\Delta = Se^{-\delta T} N(d_1) > Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) = C(S, \ldots)$$

- So, $\Omega \geq 1$
- Similarly, for a put $\Omega \leq 0$
Option Elasticity (Black-Scholes)

- For a call, we have
 \[S \Delta = Se^{-\delta T} N(d_1) > Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) = C(S, \ldots) \]
 - So, \(\Omega \geq 1 \)
 - Similarly, for a put \(\Omega \leq 0 \)
Option Elasticity (Black-Scholes)

- For a call, we have
 \[S \Delta = Se^{-\delta T} N(d_1) > Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2) = C(S, \ldots) \]

- So, \(\Omega \geq 1 \)
- Similarly, for a put \(\Omega \leq 0 \)