NAME:

M339W/389W Financial Mathematics for Actuarial Applications
University of Texas at Austin
In-Term Exam II
Instructor: Milica Čudina

Notes: This is a closed book and closed notes exam. The maximum number of points on this exam is 75.

Time: 50 minutes

<table>
<thead>
<tr>
<th>TRUE/FALSE</th>
<th>2.1 (2)</th>
<th>TRUE</th>
<th>FALSE</th>
<th>2.2 (2)</th>
<th>TRUE</th>
<th>FALSE</th>
<th>2.3 (2)</th>
<th>TRUE</th>
<th>FALSE</th>
<th>2.4 (2)</th>
<th>TRUE</th>
<th>FALSE</th>
<th>2.5 (2)</th>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

MULTIPLE CHOICE

2.9 (5)	a	b	c	d	e
2.10 (5)	a	b	c	d	e
2.11 (5)	a	b	c	d	e
2.12 (5)	a	b	c	d	e
2.13 (5)	a	b	c	d	e
2.14 (5)	a	b	c	d	e

FOR GRADER'S USE ONLY:

<table>
<thead>
<tr>
<th>DEF’N</th>
<th>T/F</th>
<th>2.6</th>
<th>2.7</th>
<th>2.8</th>
<th>M.C.</th>
<th>Σ</th>
</tr>
</thead>
</table>
2.1. **TRUE/FALSE QUESTIONS.** Please note your answers on the front page.

Problem 2.1. (2 points) Under the risk-neutral probability measure, every option on a particular stock has the continuously compounded, risk-free interest rate as its mean rate of return. *True or false?*

Solution: TRUE

Problem 2.2. Assume the Black-Scholes stock-pricing model is in force. Let \(E^* \) denote the expectation under the risk-neutral probability measure \(P^* \). Let \(\{S(t), t \geq 0\} \) denote the price of a continuous-dividend-paying stock. Then, in our usual notation,

\[
E^*[S(T)] = S(0)e^{(r-\delta)T}.
\]

True or false?

Solution: TRUE

Problem 2.3. The Black-Scholes option pricing formula can **always** be used for pricing American-type call options on non-dividend-paying assets. *True or false?*

Solution: TRUE

Problem 2.4. Let the stock price be modeled by a lognormal distribution. Then, the median stock price always exceeds the mean stock price. *True or false?*

Solution: FALSE

Problem 2.5. Let the stock price be modeled by a lognormal distribution. Then, the expected payoff of a European put option with exercise date \(T \) and strike \(K \) greater than or equal to \(\max(0, K - \mathbb{E}[S(T)]) \). *True or false?*

Solution: TRUE
2.2. **FREE-RESPONSE PROBLEMS.** Please, explain carefully all your statements and assumptions. Numerical results or single-word answers without an explanation (even if they’re correct) are worth 0 points.

Problem 2.6. (10 points)
Consider a non-dividend-paying stock whose price is modeled using the lognormal distribution. Suppose that the current stock price equals $100 and that its volatility is given to be 0.2.

The continuously compounded, risk-free interest rate is assumed to equal 0.04.

Consider a derivative security which entitles its owner to obtain a European call option on the above stock six months from today, i.e., at time $t^* = 1/2$. The call option is to be half a year to expiration at time of delivery and have the strike equal to 105% of the time–t^* price of the underlying asset. This contract is called a **forward start option**.

What is the price of the forward start option?

Solution:

At time $t^* = 1/2$, the Black-Scholes price of the call option to be delivered equals

$$V_C(t^*) = S(t^*)N(d_1) - 1.05S(t^*)e^{-r(T-t^*)}N(d_2)$$

$$= S(t^*)(N(d_1) - 1.05e^{-0.02}N(d_2))$$

with

$$d_1 = \frac{1}{0.2\sqrt{0.5}} \left[-\ln(1.05) + \left(0.04 + \frac{0.2^2}{2} \right) \times \frac{1}{2} \right] = -0.13,$$

$$d_2 = d_1 - \sigma \sqrt{T-t^*} = -0.27.$$

Hence,

$$V_C(t^*) = S(t^*)(0.4483 - 1.05e^{-0.02} \times 0.3936) = S(t^*)(0.0432).$$

So, one would need to buy 0.0432 shares of stock to be able to buy the call option in question at time–t^*. This amount of shares costs $4.32.

The price of the forward start option is
Problem 2.7. (10 points) You observe the following stock prices in the beginning of every month:

<table>
<thead>
<tr>
<th>Observation</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock price</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>81</td>
<td>90</td>
<td>100</td>
<td>90</td>
<td>81</td>
<td>90</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

i. (5 points) Calculate the (unbiased) estimate of the annual volatility based on the above data.

ii. (5 points) Assuming that the stock-prices are modeled using a geometric Brownian motion, what is your estimate of the stock’s rate of appreciation?

Solution:

i. The initial and the final stock prices are both 100, so the observed average of the log-ratios is 0. The log-ratios based on the above data are

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
<th>r_4</th>
<th>r_5</th>
<th>r_6</th>
<th>r_7</th>
<th>r_8</th>
<th>r_9</th>
<th>r_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \left(\frac{9}{10} \right)$</td>
<td>0</td>
<td>$\ln \left(\frac{10}{9} \right)$</td>
<td>$\ln \left(\frac{10}{9} \right)$</td>
<td>$\ln \left(\frac{9}{10} \right)$</td>
<td>$\ln \left(\frac{10}{9} \right)$</td>
<td>$\ln \left(\frac{10}{9} \right)$</td>
<td>0</td>
<td>$\ln \left(\frac{10}{9} \right)$</td>
<td>$\ln \left(\frac{9}{10} \right)$</td>
</tr>
</tbody>
</table>

So, the unbiased estimate of the volatility squared (on the monthly scale) is

$$\frac{1}{10 - 1} \times 8 \times \left(\ln \left(\frac{9}{10} \right) \right)^2$$

The annualized squared volatility estimate is

$$\hat{\sigma}^2 = 12 \times \frac{8}{9} \left(\ln \left(\frac{10}{9} \right) \right)^2.$$

Finally, $\hat{\sigma} = 0.344106$.

ii. Recall that the observed average of the log-ratios of stock prices equals zero. So,

$$\hat{\alpha} - \hat{\delta} = \frac{1}{2} \hat{\sigma}^2 = 0.0592045.$$
Problem 2.8. (15 points)

You are considering an investment in a non-dividend-paying stock versus an investment in a savings account. According to your belief, the stock’s mean rate of return is α and its volatility is σ.

The continuously compounded interest rate is equal to r.

What is the probability that the stock outperforms the savings account at time $-T$? You should leave your final answer in terms of the function N.

Solution: With $Z \sim N(0,1)$, we are looking for the probability

$$\mathbb{P}[S(T) > S(0)e^{rT}] = \mathbb{P}\left[S(0)e^{(\alpha-\sigma^2/2)T + \sigma\sqrt{T}Z} > S(0)e^{rT} \right]$$

$$= \mathbb{P}\left[(\alpha - \sigma^2/2)T + \sigma\sqrt{T}Z > rT \right]$$

$$= \mathbb{P}\left[Z > \frac{\sqrt{T}}{\sigma}(r - \alpha + \sigma^2/2) \right]$$

$$= N\left(\frac{(\alpha - r - \sigma^2/2)\sqrt{T}}{\sigma} \right).$$
2.3. **MULTIPLE CHOICE QUESTIONS.** Please note your answers on the front page.

Problem 2.9. Assume the Black-Scholes setting. The stock price today is $60.00 per share, its dividend yield is \(0.01\) and its volatility is \(0.20\).

The continuously-compounded, risk-free interest rate is \(0.04\).

Alice wagers to pay $100 to Bob if the price of the above stock in 1 year is above $75.00. What is the "fair" price of this wager?

(a) 13.77
(b) 14.67
(c) 15.57
(d) 16.46
(e) None of the above.

Solution: (a)

This is the Black-Scholes price of 100 **cash calls**, i.e.,

\[
100V_{CC}(0) = 100e^{-0.04} N(d_2)
\]

with

\[
d_2 = \frac{1}{0.2} \left(\ln\left(\frac{60}{75}\right) + (0.04 - 0.01 - \frac{1}{2} \cdot 0.2^2) \right) = 5(\ln(0.8) + 0.01) = -1.07
\]

So,

\[
100V_{CC}(0) = 100e^{-0.04}(0.143276) = 13.77.
\]

Problem 2.10. Assume the Black-Scholes setting.

Today’s price of a non-dividend paying stock is $65, and its volatility is \(0.20\).

The continuously-compounded, risk-free interest rate is \(0.055\).

What is the price of a three-month, $60-strike European put option on the above stock?

(a) 0.66
(b) 0.59
(c) 0.44
(d) 0.37
(e) None of the above.

Solution: (b)

In our usual notation, the price is

\[
V_P(0) = Ke^{-rT}N(-d_2) - S(0)N(-d_1)
\]

with

\[
d_1 = \frac{1}{0.2\sqrt{1/4}} \left(\ln\left(\frac{65}{60}\right) + (0.055 + \frac{1}{2} \cdot 0.2^2) \left(\frac{1}{4}\right) \right) = 10(\ln(65/60) + (0.075)(0.25)) = 0.99,
\]

\[
d_2 = d_1 - 0.2\sqrt{0.25} = 0.89.
\]
So,

\[V_P(0) = 60e^{-0.055 \cdot \frac{1}{2}} (1 - 0.8133) - 65 \cdot (1 - 0.8389) = 0.5922. \]

Problem 2.11. Assume the Black-Scholes setting.

Today’s stock price is observed to be \(S(0) = $30 \) per share. Its dividend yield is given to be 0.01 and its volatility equals 0.30.

The continuously-compounded, risk-free interest rate is \(r = 0.04 \).

What is the price of a half-year, $30-strike put?

- (a) 2.75
- (b) 2.38
- (c) 1.80
- (d) 1.20
- (e) None of the above.

Solution: (b)

In our usual notation, the price is

\[V_P(0) = Ke^{-rT} N(-d_2) - S(0)e^{-\delta T} N(-d_1) \]

with

\[d_1 = \frac{1}{0.30 \sqrt{0.5}} \left[\ln(30/30) + (0.04 - 0.01 + 0.045)(0.5) \right] = \frac{0.075}{0.3} \sqrt{0.5} = 0.18, \]

\[d_2 = d_1 - 0.3 \sqrt{0.5} = -0.04. \]

So, our final answer is

\[V_P(0) = Ke^{-rT} N(-d_2) - S(0)e^{-\delta T} N(-d_1) \]
\[= 30 \left[e^{-0.04/2} (0.516) - e^{-0.01/2} (1 - 0.5714) \right] \]
\[= 2.3796. \]
Problem 2.12. The current price of a continuous-dividend paying stock is observed to be $50 per share while its volatility is given to be 0.34. The dividend yield is projected to be 0.02. The continuously compounded, risk-free interest rate is 0.05.

Consider a European call option with the strike price equal to $40 and the exercise date in three months.

Using the Black-Scholes pricing formula, find the value $V_C(0)$ of this option at time $t = 0$.

(a) 9.08
(b) 9.80
(c) 10.55
(d) 14.10
(e) None of the above.

Solution: (c)

In our usual notation,

$$d_1 = \frac{1}{\sigma \sqrt{T}} \left[\ln \left(\frac{S(0)}{K} \right) + \left(r - \delta + \frac{1}{2} \sigma^2 \right) T \right]$$

$$= \frac{1}{0.34 \sqrt{1/4}} \left[\ln \left(\frac{50}{40} \right) + \left(0.05 - 0.02 + \frac{1}{2} \times 0.34^2 \right) \times \frac{1}{4} \right] = 1.44,$$

$$d_2 = d_1 - \sigma \sqrt{T} = 1.27.$$

The standard normal tables give us

$$N(d_1) = 0.9253, \quad N(d_2) = 0.8983.$$

Finally,

$$V_C(0) = S(0)e^{-\delta T}N(d_1) - Ke^{-rT}N(d_2) = 10.55.$$

Problem 2.13. Assume the lognormal stock-price model. The current stock price is $140 per share. Its rate of appreciation is 0.12 and its volatility is 0.32.

Your random-number generator gives you the following three draws from the unit uniform distribution:

$$1 - 0.5478, \quad 0.8365, \quad 0.5359.$$

What is the average of the three time-2 stock prices you obtain using the above three draws?

(a) 160.65
(b) 177.98
(c) 189.94
(d) 246.94
(e) None of the above.

Solution: (c)

According to the lognormal stock-price model, we have

$$S(2) = S(0)e^{(\alpha - \delta - \sigma^2/2)(2) + \sigma \sqrt{2Z}}$$
with $$Z \sim N(0, 1)$$. So, our three simulated stock-price values are

$$s_1 = S(0)e^{(\alpha - \delta - \sigma^2/2)(2) + \sigma \sqrt{2} N^{-1}(-0.5478)} = 152.16,$$

$$s_2 = S(0)e^{(\alpha - \delta - \sigma^2/2)(2) + \sigma \sqrt{2} N^{-1}(0.8365)} = 250.32,$$

$$s_3 = S(0)e^{(\alpha - \delta - \sigma^2/2)(2) + \sigma \sqrt{2} N^{-1}(0.5359)} = 167.33.$$

So, our answer is

$$\frac{1}{3}(152.16 + 250.32 + 167.33) = 189.94.$$

Problem 2.14. Assume the Black-Scholes framework. You are given the following information for a stock that pays dividends continuously at a rate proportional to its price:

(i) The current stock price is $250.
(ii) The stocks volatility is 0.3.
(iii) The continuously compounded expected rate of stock-price appreciation is 15%.

Find the value $$s^*$$ such that

$$\mathbb{P}[S(4) > s^*] = 0.05.$$

(a) $861.65
(b) $874.18
(c) $889.94
(d) $905.48
(e) None of the above.

Solution: (e)

$$s^* = 250e^{(0.15 - 0.045)(4) + 0.3(2)(1.645)} = 1020.92$$