Provide a complete solution to the following problem(s):

Problem 6.1. Let Z be a standard Brownian motion. Define the process $Y = \{Y(t), t \geq 0\}$ as $Y(t) = e^{t/2} \sin(Z(t))$. We will show that this process is a martingale.

a. (5 points) Find the expression for $d(\sin(Z(t)))$ using Itô’s Lemma.

b. (5 points) Use your answer to part a. to find the differential representation $dY(t)$ of the process Y.

c. (2 points) Now, it is sufficient to prove that the drift term in the representation obtained in part b. is equal to zero. Verify this.

Problem 6.2. (14 points) Solve problem 20.3 from McDonald.

Problem 6.3. (2 points) In the setting of the Black-Scholes stock-price model, let $\{S(t), t \geq 0\}$ denote the stock price. Define the new stochastic process $X(t) = \ln(S(t))$, for every $t \geq 0$.

Then we have that the stochastic process $\{X(t), t \geq 0\}$ is a geometric Brownian motion. True or false?

Problem 6.4. (2 points) Let $\{Z(t), t \geq 0\}$ denote a standard Brownian motion. Then the stochastic process $\{U(t), t \geq 0\}$ defined as

$$U(t) = Z(t)^2 - 2t,$$

for every $t \geq 0$ has zero drift. True or false?

Problem 6.5. (2 points) In the setting of the Black-Scholes stock-price model, let $\{S(t), t \geq 0\}$ denote the stock price with parameters α and volatility σ. Define the new stochastic process $X(t) = \ln(S(t))$, for every $t \geq 0$.

Then we have that

$$\text{Var}[X(t+h) - X(t)] = \sigma^2 h,$$

for every $t \geq 0$ and $h > 0$.

True or false?

Problem 6.6. (2 points) In the setting of the Black-Scholes stock-price model, let $\{S(t), t \geq 0\}$ denote the stock price with volatility σ and drift α. Then, we have that

$$\text{Var}[S(t+h) \mid S(t)] \approx S(t)^2 \sigma^2 h,$$

for every $t \geq 0$ and infinitesimally small $h > 0$.

True or false?

Problem 6.7. (10 points) Use Itô’s Lemma to express $dF(S(t))$ for $F : \mathbb{R}_+ \to \mathbb{R}_+$ given as $F(x) = \sqrt{x}$, where the stochastic process $\{S(t), t \geq 0\}$ satisfies the stochastic differential equation

$$dS(t) = a(b - S(t)) dt + \sigma \sqrt{S(t)} dZ(t)$$

with a, b and σ positive constants and $\{Z(t), t \geq 0\}$ a standard Brownian motion.

Problem 6.8. (2 points) Let $\{Z(t), t \geq 0\}$ be a standard Brownian motion. Then the process

$$V(t) = t^2 Z(t) - 2 \int_0^t sZ(s) ds$$

has zero drift. True or false?