Scaled Random Walks

(1) Symmetric Random Walk
(2) Scaled Symmetric Random Walk
(3) Log-Normal Distribution as the Limit of the Binomial Model

Scaled Random Walks

(1) Symmetric Random Walk
(2) Scaled Symmetric Random Walk
(3) Log-Normal Distribution as the Limit of the Binomial Model

Construction

- The goal is to create a Brownian motion

We begin with a symmetric random walk, i.e., we repeatedly toss a fair coin $(p=q=1 / 2)$

- I et X. he the random variable representing the outcome of the j th coin toss in the following way

Construction

- The goal is to create a Brownian motion
- We begin with a symmetric random walk, i.e., we repeatedly toss a fair coin ($p=q=1 / 2$)
coin toss in the following way

Construction

- The goal is to create a Brownian motion
- We begin with a symmetric random walk, i.e., we repeatedly toss a fair coin ($p=q=1 / 2$)
- Let X_{j} be the random variable representing the outcome of the $j^{\text {th }}$ coin toss in the following way

$$
X_{j}=\left\{\begin{array}{ll}
1 & \text { if the outcome is heads } \\
-1 & \text { if the outcome is tails }
\end{array} \text { for } j=1,2, \ldots\right.
$$

- Define $M_{0}=0$ and
- We call the process $M_{k}, k=0,1$,

Construction

- The goal is to create a Brownian motion
- We begin with a symmetric random walk, i.e., we repeatedly toss a fair coin ($p=q=1 / 2$)
- Let X_{j} be the random variable representing the outcome of the $j^{\text {th }}$ coin toss in the following way

$$
X_{j}=\left\{\begin{array}{ll}
1 & \text { if the outcome is heads } \\
-1 & \text { if the outcome is tails }
\end{array} \text { for } j=1,2, \ldots\right.
$$

- Define $M_{0}=0$ and

$$
M_{k}=\sum_{j=1}^{k} X_{j}, \text { for } k=1,2, \ldots
$$

Construction

- The goal is to create a Brownian motion
- We begin with a symmetric random walk, i.e., we repeatedly toss a fair coin ($p=q=1 / 2$)
- Let X_{j} be the random variable representing the outcome of the $j^{\text {th }}$ coin toss in the following way

$$
X_{j}=\left\{\begin{array}{ll}
1 & \text { if the outcome is heads } \\
-1 & \text { if the outcome is tails }
\end{array} \text { for } j=1,2, \ldots\right.
$$

- Define $M_{0}=0$ and

$$
M_{k}=\sum_{j=1}^{k} X_{j}, \text { for } k=1,2, \ldots
$$

- We call the process $M_{k}, k=0,1, \ldots$ a symmetric random walk

Increments of the symmetric random walk

- A random walk has independent increments, i.e., for every choice of nonnegative integers $0=k_{0}<k_{1}<\cdots<k_{m}$, the random variables

$$
M_{k_{1}}-M_{k_{0}}, M_{k_{2}}-M_{k_{1}}, \ldots M_{k_{m}}-M_{k_{m-1}}
$$

are independent

Increments of the symmetric random walk

- A random walk has independent increments, i.e., for every choice of nonnegative integers $0=k_{0}<k_{1}<\cdots<k_{m}$, the random variables

$$
M_{k_{1}}-M_{k_{0}}, M_{k_{2}}-M_{k_{1}}, \ldots M_{k_{m}}-M_{k_{m-1}}
$$

are independent

- Each of the random variables

$$
M_{k_{i+1}}-M_{k_{i}}=\sum_{j=k_{i}+1}^{k_{i+1}} X_{j}
$$

is called an increment of the random walk

- As for the variance, we have

Increments of the symmetric random walk

- A random walk has independent increments, i.e., for every choice of nonnegative integers $0=k_{0}<k_{1}<\cdots<k_{m}$, the random variables

$$
M_{k_{1}}-M_{k_{0}}, M_{k_{2}}-M_{k_{1}}, \ldots M_{k_{m}}-M_{k_{m-1}}
$$

are independent

- Each of the random variables

$$
M_{k_{i+1}}-M_{k_{i}}=\sum_{j=k_{i}+1}^{k_{i+1}} X_{j}
$$

is called an increment of the random walk

- The expected value of each increment is 0

Increments of the symmetric random walk

- A random walk has independent increments, i.e., for every choice of nonnegative integers $0=k_{0}<k_{1}<\cdots<k_{m}$, the random variables

$$
M_{k_{1}}-M_{k_{0}}, M_{k_{2}}-M_{k_{1}}, \ldots M_{k_{m}}-M_{k_{m-1}}
$$

are independent

- Each of the random variables

$$
M_{k_{i+1}}-M_{k_{i}}=\sum_{j=k_{i}+1}^{k_{i+1}} X_{j}
$$

is called an increment of the random walk

- The expected value of each increment is 0
- As for the variance, we have

$$
\operatorname{Var}\left[M_{k_{1}+1}-M_{k_{i}}\right]=\sum_{j=k_{i}+1}^{k_{i+1}} \operatorname{Var}\left[X_{j}\right]=\sum_{j=k_{i}+1}^{k_{i+1}} 1=k_{i+1}-k_{i}
$$

Increments of the symmetric random walk

- A random walk has independent increments, i.e., for every choice of nonnegative integers $0=k_{0}<k_{1}<\cdots<k_{m}$, the random variables

$$
M_{k_{1}}-M_{k_{0}}, M_{k_{2}}-M_{k_{1}}, \ldots M_{k_{m}}-M_{k_{m-1}}
$$

are independent

- Each of the random variables

$$
M_{k_{i+1}}-M_{k_{i}}=\sum_{j=k_{i}+1}^{k_{i+1}} X_{j}
$$

is called an increment of the random walk

- The expected value of each increment is 0
- As for the variance, we have

$$
\operatorname{Var}\left[M_{k_{1}+1}-M_{k_{i}}\right]=\sum_{j=k_{i}+1}^{k_{i+1}} \operatorname{Var}\left[X_{j}\right]=\sum_{j=k_{i}+1}^{k_{i+1}} 1=k_{i+1}-k_{i}
$$

- We say that the variance of the symmetric random walk accumulates at the rate one per unit time

Quadratic Variation of the Symmetric Random Walk

- Consider the quadratic variation of the symmetric random walk, i.e.,

$$
[M, M]_{k}=\sum_{j=1}^{k}\left(M_{j}-M_{j-1}\right)^{2}=k
$$

- Note that the quadratic variation is computed path-by-path
- Alse note that seemingly the guadratic variation [M M M, eciuals the variance of M_{k} - but these are computed in a different fashion and have different meanings:

Quadratic Variation of the Symmetric Random Walk

- Consider the quadratic variation of the symmetric random walk, i.e.,

$$
[M, M]_{k}=\sum_{j=1}^{k}\left(M_{j}-M_{j-1}\right)^{2}=k
$$

- Note that the quadratic variation is computed path-by-path
\qquad have different meanings:
\qquad

Quadratic Variation of the Symmetric Random Walk

- Consider the quadratic variation of the symmetric random walk, i.e.,

$$
[M, M]_{k}=\sum_{j=1}^{k}\left(M_{j}-M_{j-1}\right)^{2}=k
$$

- Note that the quadratic variation is computed path-by-path
- Also note that seemingly the quadratic variation $[M, M]_{k}$ equals the variance of M_{k} - but these are computed in a different fashion and have different meanings:
.
Guantit

from tick-by-tick price data, one can calculate the quadratic variation for any realized path

Quadratic Variation of the Symmetric Random Walk

- Consider the quadratic variation of the symmetric random walk, i.e.,

$$
[M, M]_{k}=\sum_{j=1}^{k}\left(M_{j}-M_{j-1}\right)^{2}=k
$$

- Note that the quadratic variation is computed path-by-path
- Also note that seemingly the quadratic variation $[M, M]_{k}$ equals the variance of M_{k} - but these are computed in a different fashion and have different meanings:
- The variance is an average over all possible paths; it is a theoretical quantity

Quadratic Variation of the Symmetric Random Walk

- Consider the quadratic variation of the symmetric random walk, i.e.,

$$
[M, M]_{k}=\sum_{j=1}^{k}\left(M_{j}-M_{j-1}\right)^{2}=k
$$

- Note that the quadratic variation is computed path-by-path
- Also note that seemingly the quadratic variation $[M, M]_{k}$ equals the variance of M_{k} - but these are computed in a different fashion and have different meanings:
- The variance is an average over all possible paths; it is a theoretical quantity
- The quadratic variation is evaluated with a single path in mind; from tick-by-tick price data, one can calculate the quadratic variation for any realized path

Scaled Random Walks

(1) Symmetric Random Walk
(2) Scaled Symmetric Random Walk
(3) Log-Normal Distribution as the Limit of the Binomial Model

The definition

- Recall the illustrative graphs on the convergence of random walks ...

For a fixed integer n, we define the scaled symmetric random walk
for all $t \geq 0$ such that $n t$ is an integer; for all other nonnegative t we define $W^{(n)}(t)$ by linear interpolation The scaled random walk has independent increments, i.e., if $0=t_{0}<t_{1}<\cdots<t_{m}$ are such that $n t_{j}$ is an integer for all j, then the random variables

The definition

- Recall the illustrative graphs on the convergence of random walks ...
- For a fixed integer n, we define the scaled symmetric random walk by

$$
W^{(n)}(t)=\frac{1}{\sqrt{n}} M_{n t}
$$

for all $t \geq 0$ such that $n t$ is an integer; for all other nonnegative t we define $W^{(n)}(t)$ by linear interpolation
the random variables

The definition

- Recall the illustrative graphs on the convergence of random walks
- For a fixed integer n, we define the scaled symmetric random walk by

$$
W^{(n)}(t)=\frac{1}{\sqrt{n}} M_{n t}
$$

for all $t \geq 0$ such that $n t$ is an integer; for all other nonnegative t we define $W^{(n)}(t)$ by linear interpolation

- The scaled random walk has independent increments, i.e., if $0=t_{0}<t_{1}<\cdots<t_{m}$ are such that $n t_{j}$ is an integer for all j, then the random variables
$W^{(n)}\left(t_{1}\right)-W^{(n)}\left(t_{0}\right), W^{(n)}\left(t_{2}\right)-W^{(n)}\left(t_{1}\right), \ldots W^{(n)}\left(t_{m}\right)-W^{(n)}\left(t_{m-1}\right)$
are independent

More properties of the scaled symmetric random walk

- Let $0 \leq s \leq t$ be such that both $n s$ and $n t$ are integers, then

$$
\begin{aligned}
\mathbb{E}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =0 \\
\operatorname{Var}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =t-s
\end{aligned}
$$

More properties of the scaled symmetric random walk

- Let $0 \leq s \leq t$ be such that both $n s$ and $n t$ are integers, then

$$
\begin{aligned}
\mathbb{E}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =0 \\
\operatorname{Var}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =t-s
\end{aligned}
$$

More properties of the scaled symmetric random walk

- Let $0 \leq s \leq t$ be such that both $n s$ and $n t$ are integers, then

$$
\begin{aligned}
\mathbb{E}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =0 \\
\operatorname{Var}\left[W^{(n)}(t)-W^{(n)}(s)\right] & =t-s
\end{aligned}
$$

- The quadratic variation for any t such that $n t$ is an integer equals

$$
\begin{aligned}
{\left[W^{(n)}, W^{(n)}\right](t) } & =\sum_{j=1}^{n t}\left[W^{(n)}\left(\frac{j}{n}\right)-W^{(n)}\left(\frac{j-1}{n}\right)\right]^{2} \\
& =\sum_{j=1}^{n t}\left[\frac{1}{\sqrt{n}} X_{j}\right]^{2} \\
& =\sum_{j=1}^{n t} \frac{1}{n}=1
\end{aligned}
$$

Limiting Distribution of the Scaled Random Walk

- Central Limit Theorem

- We use the CLT in statements such as:
\qquad
where g is any continuous, bounded function

Limiting Distribution of the Scaled Random Walk

- Central Limit Theorem

Fix $t \geq 0$. As $n \rightarrow \infty$, the distribution of the scaled random walk $W^{(n)}(t)$ evaluated at time t converges to the normal distribution with mean zero and variance t, i.e., for every $t \geq 0$

$$
W^{(n)}(t) \Rightarrow N(0, t)
$$

- We use the CLT in statements such as:

Limiting Distribution of the Scaled Random Walk

- Central Limit Theorem

Fix $t \geq 0$. As $n \rightarrow \infty$, the distribution of the scaled random walk $W^{(n)}(t)$ evaluated at time t converges to the normal distribution with mean zero and variance t, i.e., for every $t \geq 0$

$$
W^{(n)}(t) \Rightarrow N(0, t)
$$

- We use the CLT in statements such as:

$$
\mathbb{E}\left[g\left(W^{(100)}(0.25)\right)\right] \approx \frac{2}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(x) e^{-2 x^{2}} d x
$$

where g is any continuous, bounded function

Scaled Random Walks

(1) Symmetric Random Walk
(2) Scaled Symmetric Random Walk
(3) Log-Normal Distribution as the Limit of the Binomial Model

Back to the binomial pricing model

- The Central Limit Theorem allows us to conclude that the limit of a properly scaled binomial asset-pricing model leads to a stock-price with a log-normal distribution.

Back to the binomial pricing model

- The Central Limit Theorem allows us to conclude that the limit of a properly scaled binomial asset-pricing model leads to a stock-price with a log-normal distribution.
- Consider a binomial model for a stock price on the time interval $[0, t]$ with n steps (binomial periods); assume that n and t are chosen so that $n t$ is an integer
and let the "down factor" be $d_{n}=1-\frac{\sigma}{\sqrt{n}}$
- For simplicity, assume that there is no interest ate and that the stock pays no dividends. The final result will hold in those cases as well, but it is a bit harder to exhibit

Back to the binomial pricing model

- The Central Limit Theorem allows us to conclude that the limit of a properly scaled binomial asset-pricing model leads to a stock-price with a log-normal distribution.
- Consider a binomial model for a stock price on the time interval $[0, t]$ with n steps (binomial periods); assume that n and t are chosen so that $n t$ is an integer
- Let the "up factor" be $u_{n}=1+\frac{\sigma}{\sqrt{n}}$ and let the "down factor" be $d_{n}=1-\frac{\sigma}{\sqrt{n}}$
(1) mancory well, but it is a bit harder to exhibit
- The risk neutral probabilities are

Back to the binomial pricing model

- The Central Limit Theorem allows us to conclude that the limit of a properly scaled binomial asset-pricing model leads to a stock-price with a log-normal distribution.
- Consider a binomial model for a stock price on the time interval $[0, t]$ with n steps (binomial periods); assume that n and t are chosen so that $n t$ is an integer
- Let the "up factor" be $u_{n}=1+\frac{\sigma}{\sqrt{n}}$ and let the "down factor" be $d_{n}=1-\frac{\sigma}{\sqrt{n}}$
- For simplicity, assume that there is no interest rate and that the stock pays no dividends. The final result will hold in those cases as well, but it is a bit harder to exhibit

Back to the binomial pricing model

- The Central Limit Theorem allows us to conclude that the limit of a properly scaled binomial asset-pricing model leads to a stock-price with a log-normal distribution.
- Consider a binomial model for a stock price on the time interval $[0, t]$ with n steps (binomial periods); assume that n and t are chosen so that $n t$ is an integer
- Let the "up factor" be $u_{n}=1+\frac{\sigma}{\sqrt{n}}$ and let the "down factor" be $d_{n}=1-\frac{\sigma}{\sqrt{n}}$
- For simplicity, assume that there is no interest rate and that the stock pays no dividends. The final result will hold in those cases as well, but it is a bit harder to exhibit
- The risk neutral probabilities are

$$
p^{*}=\frac{1-d_{n}}{u_{n}-d_{n}}=\frac{1}{2}, q^{*}=1-p^{*}=\frac{1}{2}
$$

Coin tosses

- $S(0)$... initial stock price

$H_{n t} \ldots$ the number of heads in the first nt coin tosses
 the number of tails in the first nt coin tosses,

Coin tosses

- $S(0) \ldots$ initial stock price
- $H_{n t} \ldots$ the number of heads in the first nt coin tosses
- Then, the symmetric random walk $M_{n t}$ is the number of heads minus the number of tails, i.e.,

Coin tosses

- $S(0)$... initial stock price
- $H_{n t} \ldots$ the number of heads in the first $n t$ coin tosses
- $T_{n t} \ldots$ the number of tails in the first $n t$ coin tosses, i.e.,

$$
T_{n t}=n t-H_{n t}
$$

- Then, the symmetric random walk $M_{n t}$ is the number of heads minus the number of tails, i.e.,

$$
M_{n t}=H_{n t}-T_{n t}
$$

- Hence,

Coin tosses

- $S(0)$... initial stock price
- $H_{n t} \ldots$ the number of heads in the first $n t$ coin tosses
- $T_{n t} \ldots$ the number of tails in the first $n t$ coin tosses, i.e.,

$$
T_{n t}=n t-H_{n t}
$$

- Then, the symmetric random walk $M_{n t}$ is the number of heads minus the number of tails, i.e.,

$$
M_{n t}=H_{n t}-T_{n t}
$$

- Hence,

Coin tosses

- $S(0)$... initial stock price
- $H_{n t} \ldots$ the number of heads in the first $n t$ coin tosses
- $T_{n t} \ldots$ the number of tails in the first $n t$ coin tosses, i.e.,

$$
T_{n t}=n t-H_{n t}
$$

- Then, the symmetric random walk $M_{n t}$ is the number of heads minus the number of tails, i.e.,

$$
M_{n t}=H_{n t}-T_{n t}
$$

- Hence,

$$
H_{n t}=\frac{1}{2}\left(n t+M_{n t}\right) \text { and } T_{n t}=\frac{1}{2}\left(n t-M_{n t}\right)
$$

Binomial stock-price. Convergence Theorem

- Using the above notation and the binomial pricing model, we get that the stock price at time t equals

$$
\begin{aligned}
S_{n}(t) & =S(0) u_{n}^{H_{n t}} d_{n}^{T_{n t}} \\
& =S(0)\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t+M_{n t}\right)}\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t-M_{n t}\right)}
\end{aligned}
$$

Theorem.
where $W(t)$ is a normal random variable with mean zero and variance t.

Binomial stock-price. Convergence Theorem

- Using the above notation and the binomial pricing model, we get that the stock price at time t equals

$$
\begin{aligned}
S_{n}(t) & =S(0) u_{n}^{H_{n t}} d_{n}^{T_{n t}} \\
& =S(0)\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t+M_{n t}\right)}\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t-M_{n t}\right)}
\end{aligned}
$$

- Theorem.

As $n \rightarrow \infty$, the distribution of $S_{n}(t)$ converges to the distribution of

$$
S(t)=S(0) \exp \left\{\sigma W(t)-\frac{1}{2} \sigma^{2} t\right\}
$$

where $W(t)$ is a normal random variable with mean zero and variance t.

Binomial stock-price. Convergence Theorem

- Using the above notation and the binomial pricing model, we get that the stock price at time t equals

$$
\begin{aligned}
S_{n}(t) & =S(0) u_{n}^{H_{n t}} d_{n}^{T_{n t}} \\
& =S(0)\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t+M_{n t}\right)}\left(1+\frac{\sigma}{\sqrt{n}}\right)^{\frac{1}{2}\left(n t-M_{n t}\right)}
\end{aligned}
$$

- Theorem.

As $n \rightarrow \infty$, the distribution of $S_{n}(t)$ converges to the distribution of

$$
S(t)=S(0) \exp \left\{\sigma W(t)-\frac{1}{2} \sigma^{2} t\right\}
$$

where $W(t)$ is a normal random variable with mean zero and variance t.

- The above is very important !!!!!

The log-normal distribution

- Definition. The distribution of $S(t)$ is called log-normal.

$$
\begin{aligned}
& \text { In general, any random variable of the form } c e^{X} \text { with } c \text { a constant } \\
& \text { and } X \text { a normally distributed random variable is referred to as } \\
& \text { log-normal }
\end{aligned}
$$

is normal with mean $-\frac{1}{2} \sigma^{2} t$ and variance $\sigma^{2} t$

The log-normal distribution

- Definition. The distribution of $S(t)$ is called log-normal.
- In general, any random variable of the form $c e^{X}$ with c a constant and X a normally distributed random variable is referred to as log-normal
is normal with mean $-\frac{1}{2} \sigma^{2} t$ and variance $\sigma^{2} t$

The log-normal distribution

- Definition. The distribution of $S(t)$ is called log-normal.
- In general, any random variable of the form $c e^{X}$ with c a constant and X a normally distributed random variable is referred to as log-normal
- In the present case,

$$
X=\sigma W(t)-\frac{1}{2} \sigma^{2} t
$$

is normal with mean $-\frac{1}{2} \sigma^{2} t$ and variance $\sigma^{2} t$

