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Construction

• The goal is to create a Brownian motion

• We begin with a symmetric random walk, i.e., we repeatedly toss a
fair coin (p = q = 1/2)

• Let Xj be the random variable representing the outcome of the j th

coin toss in the following way

Xj =

{
1 if the outcome is heads

−1 if the outcome is tails
for j = 1, 2, . . .

• Define M0 = 0 and

Mk =
k∑

j=1

Xj , for k = 1, 2, . . .

• We call the process Mk , k = 0, 1, . . . a symmetric random walk
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Increments of the symmetric random walk

• A random walk has independent increments, i.e., for every choice
of nonnegative integers 0 = k0 < k1 < · · · < km, the random
variables

Mk1 −Mk0 , Mk2 −Mk1 , . . . Mkm −Mkm−1

are independent
• Each of the random variables

Mki+1 −Mki =

ki+1∑
j=ki+1

Xj

is called an increment of the random walk
• The expected value of each increment is 0
• As for the variance, we have

Var [Mk1+1 −Mki ] =

ki+1∑
j=ki+1

Var [Xj ] =

ki+1∑
j=ki+1

1 = ki+1 − ki

• We say that the variance of the symmetric random walk
accumulates at the rate one per unit time
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Quadratic Variation of the Symmetric
Random Walk

• Consider the quadratic variation of the symmetric random walk, i.e.,

[M,M]k =
k∑

j=1

(Mj −Mj−1)
2 = k.

• Note that the quadratic variation is computed path-by-path

• Also note that seemingly the quadratic variation [M,M]k equals the
variance of Mk - but these are computed in a different fashion and
have different meanings:

• The variance is an average over all possible paths; it is a theoretical
quantity

• The quadratic variation is evaluated with a single path in mind;
from tick-by-tick price data, one can calculate the quadratic
variation for any realized path
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The definition

• Recall the illustrative graphs on the convergence of random walks
. . .

• For a fixed integer n, we define the scaled symmetric random walk
by

W (n)(t) =
1√
n
Mnt

for all t ≥ 0 such that nt is an integer; for all other nonnegative t -
we define W (n)(t) by linear interpolation

• The scaled random walk has independent increments, i.e., if
0 = t0 < t1 < · · · < tm are such that ntj is an integer for all j , then
the random variables

W (n)(t1)−W (n)(t0), W (n)(t2)−W (n)(t1), . . . W (n)(tm)−W (n)(tm−1)

are independent
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More properties of the scaled symmetric
random walk

• Let 0 ≤ s ≤ t be such that both ns and nt are integers, then

E[W (n)(t)−W (n)(s)] = 0

Var [W (n)(t)−W (n)(s)] = t − s

• The quadratic variation for any t such that nt is an integer equals

[W (n),W (n)](t) =
nt∑

j=1

[
W (n)(

j

n
)−W (n)(

j − 1

n
)

]2

=
nt∑

j=1

[
1√
n
Xj

]2

=
nt∑

j=1

1

n
= 1
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Limiting Distribution of the Scaled
Random Walk

• Central Limit Theorem

Fix t ≥ 0. As n →∞, the distribution of the scaled random walk
W (n)(t) evaluated at time t converges to the normal distribution
with mean zero and variance t, i.e., for every t ≥ 0

W (n)(t)⇒ N(0, t)

• We use the CLT in statements such as:

E[g(W (100)(0.25))] ≈ 2√
2π

∫ ∞

−∞
g(x)e−2x2

dx

where g is any continuous, bounded function
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Back to the binomial pricing model

• The Central Limit Theorem allows us to conclude that the limit of a
properly scaled binomial asset-pricing model leads to a stock-price

with a log-normal distribution.

• Consider a binomial model for a stock price on the time interval
[0, t] with n steps (binomial periods); assume that n and t are
chosen so that nt is an integer

• Let the “up factor” be un = 1 + σ√
n

and let the “down factor” be dn = 1− σ√
n

• For simplicity, assume that there is no interest rate and that the
stock pays no dividends. The final result will hold in those cases as
well, but it is a bit harder to exhibit

• The risk neutral probabilities are

p∗ =
1− dn

un − dn
=

1

2
, q∗ = 1− p∗ =

1

2



Back to the binomial pricing model

• The Central Limit Theorem allows us to conclude that the limit of a
properly scaled binomial asset-pricing model leads to a stock-price

with a log-normal distribution.

• Consider a binomial model for a stock price on the time interval
[0, t] with n steps (binomial periods); assume that n and t are
chosen so that nt is an integer

• Let the “up factor” be un = 1 + σ√
n

and let the “down factor” be dn = 1− σ√
n

• For simplicity, assume that there is no interest rate and that the
stock pays no dividends. The final result will hold in those cases as
well, but it is a bit harder to exhibit

• The risk neutral probabilities are

p∗ =
1− dn

un − dn
=

1

2
, q∗ = 1− p∗ =

1

2



Back to the binomial pricing model

• The Central Limit Theorem allows us to conclude that the limit of a
properly scaled binomial asset-pricing model leads to a stock-price

with a log-normal distribution.

• Consider a binomial model for a stock price on the time interval
[0, t] with n steps (binomial periods); assume that n and t are
chosen so that nt is an integer

• Let the “up factor” be un = 1 + σ√
n

and let the “down factor” be dn = 1− σ√
n

• For simplicity, assume that there is no interest rate and that the
stock pays no dividends. The final result will hold in those cases as
well, but it is a bit harder to exhibit

• The risk neutral probabilities are

p∗ =
1− dn

un − dn
=

1

2
, q∗ = 1− p∗ =

1

2



Back to the binomial pricing model

• The Central Limit Theorem allows us to conclude that the limit of a
properly scaled binomial asset-pricing model leads to a stock-price

with a log-normal distribution.

• Consider a binomial model for a stock price on the time interval
[0, t] with n steps (binomial periods); assume that n and t are
chosen so that nt is an integer

• Let the “up factor” be un = 1 + σ√
n

and let the “down factor” be dn = 1− σ√
n

• For simplicity, assume that there is no interest rate and that the
stock pays no dividends. The final result will hold in those cases as
well, but it is a bit harder to exhibit

• The risk neutral probabilities are

p∗ =
1− dn

un − dn
=

1

2
, q∗ = 1− p∗ =

1

2



Back to the binomial pricing model

• The Central Limit Theorem allows us to conclude that the limit of a
properly scaled binomial asset-pricing model leads to a stock-price

with a log-normal distribution.

• Consider a binomial model for a stock price on the time interval
[0, t] with n steps (binomial periods); assume that n and t are
chosen so that nt is an integer

• Let the “up factor” be un = 1 + σ√
n

and let the “down factor” be dn = 1− σ√
n

• For simplicity, assume that there is no interest rate and that the
stock pays no dividends. The final result will hold in those cases as
well, but it is a bit harder to exhibit

• The risk neutral probabilities are

p∗ =
1− dn

un − dn
=

1

2
, q∗ = 1− p∗ =

1

2



Coin tosses

• S(0) . . . initial stock price

• Hnt . . . the number of heads in the first nt coin tosses

• Tnt . . . the number of tails in the first nt coin tosses, i.e.,

Tnt = nt − Hnt

• Then, the symmetric random walk Mnt is the number of heads
minus the number of tails, i.e.,

Mnt = Hnt − Tnt

• Hence,

Hnt =
1

2
(nt + Mnt) andTnt =

1

2
(nt −Mnt)
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Binomial stock-price. Convergence
Theorem

• Using the above notation and the binomial pricing model, we get
that the stock price at time t equals

Sn(t) = S(0)uHnt
n dTnt

n

= S(0)

(
1 +

σ√
n

) 1
2 (nt+Mnt) (

1 +
σ√
n

) 1
2 (nt−Mnt)

• Theorem.
As n →∞, the distribution of Sn(t) converges to the distribution of

S(t) = S(0) exp

{
σW (t)− 1

2
σ2t

}
where W (t) is a normal random variable with mean zero and
variance t.

• The above is very important !!!!!
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The log-normal distribution

• Definition. The distribution of S(t) is called log-normal.

• In general, any random variable of the form ceX with c a constant
and X a normally distributed random variable is referred to as
log-normal

• In the present case,

X = σW (t)− 1

2
σ2t

is normal with mean − 1
2σ2t and variance σ2t
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