An interpolation result for the convergence to the Hartree dynamics in Sobolev trace norms

Michael Hott

University of Texas at Austin

September 28, 2016

Joint work with Ioannis Anapolitanos (KIT, Germany). Financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.
Outline

Introduction
Outline

Introduction

Previous results
Outline

Introduction

Previous results

Our results
Outline

Introduction

Previous results

Our results

Proof of both Theorems
Physical background

Nernst 1906:
If one cools a system down, it will drop in to the lowest quantum state (Third law of TD).
For a Bose gas, we may compute the density in the limit of a large system as

$$\frac{N}{V} = c T^3$$

\[\int_0^\infty \sqrt{z} dz e^{z - \beta \mu - 1}\]

where \(\beta = \left(\frac{k_B}{T}\right)^{-1}\) and \(z = \beta \epsilon\).

For fixed \(\frac{N}{V}\), as \(T\) decreases, \(\mu\) increases and eventually \(\mu(T_c) = 0\) for some critical temperature \(T_c\).
Below \(T_c\) we would have \(\mu > 0\) for a Bose gas, a contradiction!

→ Resolve paradox by taking \(\epsilon = 0\) states separately into account, i.e., below \(T_c\) these states become relevant!

→ Bose-Einstein Condensation
Physical background

Nernst 1906: If one cools a system down, it will drop in to the lowest quantum state (Third law of TD).
Physical background

Nernst 1906: If one cools a system down, it will drop into the lowest quantum state (Third law of TD).

For a Bose gas, we may compute the density in the limit of a large system as

\[
\frac{N}{V} = cT^{\frac{3}{2}} \int_0^\infty \frac{\sqrt{z}dz}{e^{z-\beta\mu} - 1}
\]

where \(\beta = (k_B T)^{-1}\) and \(z = \beta \epsilon\).
Physical background

Nernst 1906: If one cools a system down, it will drop in to the lowest quantum state (Third law of TD). For a Bose gas, we may compute the density in the limit of a large system as

\[
\frac{N}{V} = cT^{\frac{3}{2}} \int_0^\infty \frac{\sqrt{z}dz}{e^{z-\beta \mu} - 1}
\]

where \(\beta = (k_B T)^{-1} \) and \(z = \beta \epsilon \). For fixed \(N/V \), as \(T \) decreases, \(\mu \leq 0 \) increases and eventually \(\mu(T_c) = 0 \) for some critical temperature \(T_c \).
Physical background

Nernst 1906: If one cools a system down, it will drop in to the lowest quantum state (Third law of TD).

For a Bose gas, we may compute the density in the limit of a large system as

\[
\frac{N}{V} = cT^\frac{3}{2} \int_0^\infty \frac{\sqrt{z}dz}{e^{z-\beta\mu} - 1}
\]

where \(\beta = (k_B T)^{-1} \) and \(z = \beta \epsilon \). For fixed \(N/V \), as \(T \) decreases, \(\mu \leq 0 \) increases and eventually \(\mu(T_c) = 0 \) for some critical temperature \(T_c \). Below \(T_c \) we would have \(\mu > 0 \) for a Bose gas, a contradiction!
Physical background

Nernst 1906: If one cools a system down, it will drop in to the lowest quantum state (Third law of TD). For a Bose gas, we may compute the density in the limit of a large system as

\[
\frac{N}{V} = cT^3 \int_0^\infty \sqrt{z}dz \frac{e^{\beta \mu}}{e^{z} - \beta \mu - 1}
\]

where \(\beta = (k_B T)^{-1} \) and \(z = \beta \epsilon \). For fixed \(N/V \), as \(T \) decreases, \(\mu \leq 0 \) increases and eventually \(\mu(T_c) = 0 \) for some critical temperature \(T_c \). Below \(T_c \) we would have \(\mu > 0 \) for a Bose gas, a contradiction!

\[\rightarrow\] Resolve paradox by taking \(\epsilon = 0 \)—states separately into account, i.e., below \(T_c \) these states become relevant!
Physical background

Nernst 1906: If one cools a system down, it will drop in to the lowest quantum state (Third law of TD). For a Bose gas, we may compute the density in the limit of a large system as

\[
\frac{N}{V} = cT^\frac{3}{2} \int_0^\infty \frac{\sqrt{z}dz}{e^{z-\beta\mu} - 1}
\]

where \(\beta = (k_B T)^{-1} \) and \(z = \beta \epsilon \). For fixed \(N/V \), as \(T \) decreases, \(\mu \leq 0 \) increases and eventually \(\mu(T_c) = 0 \) for some critical temperature \(T_c \). Below \(T_c \) we would have \(\mu > 0 \) for a Bose gas, a contradiction!

→ Resolve paradox by taking \(\epsilon = 0 \)–states separately into account, i.e., below \(T_c \) these states become relevant!

→ Bose-Einstein Condensation
Setting

N weakly interacting bosons

$$H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|} \quad \text{on} \quad \mathcal{H}_N := L^2(\mathbb{R}^3) \otimes s^N$$
Setting

N weakly interacting bosons

\[H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|} \quad \text{on } \mathcal{H}_N := L^2(\mathbb{R}^3)^{\otimes_s N} \]

$\lambda \in \mathbb{R}$ some coupling constant. In this talk, focus on $T = -\Delta$.

An interpolation result for the convergence to the Hartree dynamics in Sobolev trace norms

Michael Hott
Setting

N weakly interacting bosons

$$H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|} \quad \text{on } \mathcal{H}_N := L^2(\mathbb{R}^3) \otimes s^N$$

$\lambda \in \mathbb{R}$ some coupling constant. In this talk, focus on $T = -\Delta$. Assume a BEC in the beginning.
Setting

\(N \) weakly interacting bosons

\[
H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|} \quad \text{on } \mathcal{H}_N := L^2(\mathbb{R}^3) \otimes s^N
\]

\(\lambda \in \mathbb{R} \) some coupling constant. In this talk, focus on \(T = -\Delta \).

Assume a BEC in the beginning. Evolution equation:

\[
\begin{aligned}
 i \partial_t \Psi_{N,t} &= H_N \Psi_{N,t} \\
 \Psi_{N,0} &= \varphi_0 ^ \otimes N
\end{aligned}
\]

(1)
Setting

\(N \) weakly interacting bosons

\[
H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \lambda \frac{1}{|x_i - x_j|} \quad \text{on } \mathcal{H}_N := L^2(\mathbb{R}^3)^\otimes S^N
\]

\(\lambda \in \mathbb{R} \) some coupling constant. In this talk, focus on \(T = -\Delta \).

Assume a BEC in the beginning. Evolution equation:

\[
\begin{aligned}
\begin{cases}
 i \partial_t \Psi_{N,t} &= H_N \Psi_{N,t} \\
 \Psi_{N,0} &= \varphi_0^\otimes N
\end{cases}
\end{aligned}
\]

Solution: \(\Psi_{N,t} = e^{-iH_N t} \Psi_{N,0} \).
Setting

N weakly interacting bosons

$$H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|} \quad \text{on } \mathcal{H}_N := L^2(\mathbb{R}^3)^{\otimes sN}$$

$\lambda \in \mathbb{R}$ some coupling constant. In this talk, focus on $T = -\Delta$. Assume a BEC in the beginning. Evolution equation:

$$\begin{cases} i\partial_t \Psi_{N,t} = H_N \Psi_{N,t} \\ \Psi_{N,0} = \varphi_0 \otimes \cdots \otimes \varphi_0 \end{cases} \quad (1)$$

Solution: $\Psi_{N,t} = e^{-iH_N t} \Psi_{N,0}$.

Problem: We are interested in measurable quantities like $\langle \Psi_{N,t}, A \Psi_{N,t} \rangle$.

Michael Hott
An interpolation result for the convergence to the Hartree dynamics
Setting

N weakly interacting bosons

$$H_N := \sum_{i=1}^{N} T_i + \frac{1}{N-1} \sum_{i<j} \frac{\lambda}{|x_i - x_j|}$$

on $\mathcal{H}_N := L^2(\mathbb{R}^3)^\otimes s_N$

$\lambda \in \mathbb{R}$ some coupling constant. In this talk, focus on $T = -\Delta$.
Assume a BEC in the beginning. Evolution equation:

$$\begin{cases}
 i \partial_t \Psi_{N,t} = H_N \Psi_{N,t} \\
 \Psi_{N,0} = \varphi_0 \otimes N
\end{cases} \tag{1}$$

Solution: $\Psi_{N,t} = e^{-iH_N t} \Psi_{N,0}$.

Problem: We are interested in measurable quantities like $\langle \Psi_{N,t}, A \Psi_{N,t} \rangle$. \(\rightarrow\) In general hard to compute!
Effective equation for (1)

Ansatz: $\Psi_{N,t} = \phi_t \otimes N$

Insert in (1):

$$N \langle \phi_t, i \partial_t \phi_t \rangle = \langle \Psi_{N,t}, H_N \Psi_{N,t} \rangle = N \langle \phi_t, T \phi_t \rangle + N^2 \langle \phi_t \otimes 2, \lambda |x_1 - x_2| \phi_t \otimes 2 \rangle =: N h(\phi_t, \phi_t)$$

Obtain dynamics:

$$i \partial_t \phi_t = \partial_t \phi_t h(\phi_t, \phi_t) = T \phi_t + \lambda |\cdot| \star |\cdot| \phi_t \big|_t = 0 = \phi_0.$$
Effective equation for (1)

Ansatz: $\psi_{N,t} = \varphi_t \otimes^N$

Insert in (1):

$$N\langle \varphi_t, i \partial_t \varphi_t \rangle = \langle \psi_{N,t}, H_N \psi_{N,t} \rangle$$
Effective equation for (1)

Ansatz: $\Psi_{N,t} = \varphi_t^\otimes N$

Insert in (1):

$$N\langle \varphi_t, i\partial_t \varphi_t \rangle = \langle \Psi_{N,t}, H_N \Psi_{N,t} \rangle$$

$$= N\langle \varphi_t, T \varphi_t \rangle + \frac{N}{2} \langle \varphi_t^\otimes 2, \frac{\lambda}{|x_1 - x_2|} \varphi_t^\otimes 2 \rangle$$

$$=: Nh(\varphi_t, \overline{\varphi}_t)$$
Effective equation for (1)

Ansatz: $\Psi_{N,t} = \varphi_t \otimes N$

Insert in (1):

$$N\langle \varphi_t, i \partial_t \varphi_t \rangle = \langle \Psi_{N,t}, H_N \Psi_{N,t} \rangle$$

$$= N\langle \varphi_t, T \varphi_t \rangle + \frac{N}{2} \langle \varphi_t \otimes 2, \frac{\lambda}{|x_1 - x_2|} \varphi_t \otimes 2 \rangle$$

$$= : Nh(\varphi_t, \bar{\varphi}_t)$$

Obtain dynamics:

$$\begin{cases}
 i \partial_t \varphi_t = \partial_{\bar{\varphi}_t} h(\varphi_t, \bar{\varphi}_t) = T \varphi_t + \frac{\lambda}{|\cdot|} \ast |\varphi_t|^2 \varphi_t \\
 \varphi_t \bigg|_{t=0} = \varphi_0
\end{cases}$$

(2)
Why does one prefer to study the Hartree equation instead of the Schrödinger equation?
Why does one prefer to study the Hartree equation instead of the Schrödinger equation?

- Only one-particle equation
Why does one prefer to study the Hartree equation instead of the Schrödinger equation?

- Only one-particle equation
- Hardy’s inequality \(\Rightarrow \frac{\lambda}{|.|} \ast |\varphi_t|^2 \in L^\infty(\mathbb{R}^3) \text{ if } \varphi_t \in H^1(\mathbb{R}^3) \)
Why does one prefer to study the Hartree equation instead of the Schrödinger equation?

- Only one-particle equation
- Hardy’s inequality $\Rightarrow \frac{\lambda}{|.|} * |\varphi_t|^2 \in L^\infty(\mathbb{R}^3)$ if $\varphi_t \in H^1(\mathbb{R}^3)$
- Many results known for the Hartree equation
Why does one prefer to study the Hartree equation instead of the Schrödinger equation?

- Only one-particle equation
- Hardy’s inequality \(\Rightarrow \lambda \ast |\varphi_t|^2 \in L^\infty(\mathbb{R}^3) \) if \(\varphi_t \in H^1(\mathbb{R}^3) \)
- Many results known for the Hartree equation

\[E_H(\varphi_t) := \|\nabla \varphi_t\|_2^2 + \langle \varphi_t, \frac{\lambda}{|.|} \ast |\varphi_t|^2 \varphi_t \rangle \] is conserved! \(\Rightarrow \) (2) is globally well-posed for \(H^1 \)-initial data
In what sense is (2) an effective equation for (1)?
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

\[
\langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle = \langle \phi_t^{\otimes k}, A \phi_t^{\otimes k} \rangle + o(1) \quad (3)
\]

as \(N \to \infty \) for \(A \in \mathcal{B}(L^2(\mathbb{R}^3)^{\otimes s^k}), 1 \leq k \leq N \).
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

$$\langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_t \otimes k, A \varphi_t \otimes k \rangle + o(1)$$

as $N \to \infty$ for $A \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes s^k)$, $1 \leq k \leq N$.

EY01: Coulomb case, no rate
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

$$\langle \psi_{N,t}, \mathcal{A} \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_t \otimes k, \mathcal{A} \varphi_t \otimes k \rangle + o(1)$$ \hspace{1cm} (3)

as \(N \to \infty \) for \(\mathcal{A} \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes s^k), \ 1 \leq k \leq N. \)

EY01 : Coulomb case, no rate
RS09 : \(\mathcal{O}(N^{-\frac{1}{2}}) \)
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

\[\langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_t \otimes k, A \varphi_t \otimes k \rangle + o(1) \quad (3) \]

as \(N \to \infty \) for \(A \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes s^k), 1 \leq k \leq N. \)

EY01 : Coulomb case, no rate
RS09 : \(O(N^{-\frac{1}{2}}) \)
Pi11 : \(O(N^{-\frac{1}{2}}) \) with much simpler proof (also [KP10])
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

\[
\langle \psi_{N,t}, \mathcal{A} \otimes I_{N-k} \psi_{N,t} \rangle = \langle \phi_t \otimes k, \mathcal{A} \phi_t \otimes k \rangle + o(1)
\]

(3)

as \(N \to \infty \) for \(\mathcal{A} \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes s^k), \ 1 \leq k \leq N \).

EY01 : Coulomb case, no rate
RS09 : \(O(N^{-\frac{1}{2}}) \)
Pi11 : \(O(N^{-\frac{1}{2}}) \) with much simpler proof (also [KP10])
CLS11 : \(O(N^{-1}) \)
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

$$\langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_t \otimes k, A \varphi_t \otimes k \rangle + o(1) \quad (3)$$

as \(N \to \infty \) for \(A \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes s^k), 1 \leq k \leq N \).

EY01: Coulomb case, no rate

RS09: \(O(N^{-\frac{1}{2}}) \)

Pi11: \(O(N^{-\frac{1}{2}}) \) with much simpler proof (also [KP10])

CLS11: \(O(N^{-1}) \)

FKS09: \(o(1) \) but with only \(\varphi_0 \in L^2(\mathbb{R}^3) \)!
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

$$\langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_{t} \otimes k, A \varphi_{t} \otimes k \rangle + o(1)$$

as $N \to \infty$ for $A \in B(L^2(\mathbb{R}^3) \otimes s^k)$, $1 \leq k \leq N$.

EY01 : Coulomb case, no rate
RS09 : $O(N^{-\frac{1}{2}})$
Pi11 : $O(N^{-\frac{1}{2}})$ with much simpler proof (also [KP10])
CLS11 : $O(N^{-1})$
FKS09 : $o(1)$ but with only $\varphi_0 \in L^2(\mathbb{R}^3)$!
MS12 : $T = \sqrt{1 - \Delta}$, $O(N^{-\frac{1}{4}})$ for unbounded A!
In what sense is (2) and effective equation for (1)?

First result but for bounded potentials instead of the Coulomb potential was obtained by [Sp80]:

$$\langle \psi_{N,t}, \mathcal{A} \otimes I_{N-k} \psi_{N,t} \rangle = \langle \varphi_t \otimes^k, \mathcal{A} \varphi_t \otimes^k \rangle + o(1) \quad (3)$$

as $N \to \infty$ for $\mathcal{A} \in \mathcal{B}(L^2(\mathbb{R}^3) \otimes ^k), 1 \leq k \leq N$.

EY01 : Coulomb case, no rate

RS09 : $O(N^{-\frac{1}{2}})$

Pi11 : $O(N^{-\frac{1}{2}})$ with much simpler proof (also [KP10])

CLS11 : $O(N^{-1})$

FKS09 : $o(1)$ but with only $\varphi_0 \in L^2(\mathbb{R}^3)$!

MS12 : $T = \sqrt{1 - \Delta}, O(N^{-\frac{1}{4}})$ for unbounded \mathcal{A}!

Lu12 : $T = (i\nabla - A)^2, O(N^{-\frac{1}{4}})$ for unbounded \mathcal{A}.
How does one usually prove (3)?
How does one usually prove (3)?

We have

\[
\left| \langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle - \langle \varphi^{\otimes k}_t, A \varphi^{\otimes k}_t \rangle \right|
\]
How does one usually prove (3)?

We have

\[
\left| \langle \psi_{N,t}, \mathcal{A} \otimes I_{N-k} \psi_{N,t} \rangle - \langle \varphi_{t}^{\otimes k}, \mathcal{A} \varphi_{t}^{\otimes k} \rangle \right|
\]

\[
= \left| \text{Tr} \left(\mathcal{A} \right) \right| \left(\text{Tr}_{k+1, \ldots, N} \langle \psi_{N,t} \rangle \langle \psi_{N,t}^{\dagger} \rangle \right) =: \gamma_{N,t}^{(k)}
\]

\[
- \text{Tr} \left(\mathcal{A} \varphi_{t}^{\otimes k} \right) \left(\varphi_{t}^{\otimes k} \right) \left(\varphi_{t}^{\otimes k} \right) \left(\varphi_{t}^{\otimes k} \right) =: P_{t}^{(k)}
\]
How does one usually prove (3)?

We have

\[\left| \langle \Psi_{N,t}, A \otimes I_{N-k} \Psi_{N,t} \rangle - \langle \varphi_{t}^{\otimes k}, A \varphi_{t}^{\otimes k} \rangle \right| \]

\[= |\text{Tr}(A \underbrace{\text{Tr}_{k+1,\ldots,N} \Psi_{N,t} \langle \Psi_{N,t} |}_{=: \gamma_{N,t}^{(k)}}) | \]

\[- \text{Tr}(A \underbrace{\langle \varphi_{t}^{\otimes k} | \langle \varphi_{t}^{\otimes k} |}_{=: P_{t}^{(k)}}) | \]

\[\leq \| A \| \| \text{Tr} \| \gamma_{N,t}^{(k)} - P_{t}^{(k)} \| \]
How does one usually prove (3)?

We have

\[\left| \langle \psi_{N,t}, A \otimes I_{N-k} \psi_{N,t} \rangle - \langle \varphi_t^k, A \varphi_t^k \rangle \right| = \left| \text{Tr} \left(S_k^{-\theta/2} A S_k^{-\theta/2} S_k^{\theta/2} \left[\text{Tr}_{k+1,\ldots,N} \psi_{N,t} \langle \psi_{N,t}, S_k^{\theta/2} \rangle \right] \right) \right| =: \gamma_{N,t}^{(k)} \]

\[- \text{Tr} \left(S_k^{-\theta/2} A S_k^{-\theta/2} S_k^{\theta/2} \left[\varphi_t^k \langle \varphi_t^k, S_k^{\theta/2} \rangle \right] \right) =: P_t^{(k)} \]

\[\leq \left\| S_k^{-\theta/2} A S_k^{-\theta/2} \right\| \text{Tr} \left(S_k^{\theta/2} \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^{\theta/2} \right), \]

where \(S_k := \sum_{i=1}^{k} (1 + T_i) \).
How does one usually prove (3)?

We have

$$\left| \langle \Psi_{N,t}, A \otimes I_N - k \Psi_{N,t} \rangle - \langle \varphi \otimes k, A \varphi \otimes k \rangle \right|$$

$$= |\text{Tr}(S_k^{-\theta/2} A S_k^{-\theta/2} S_k^{\theta/2} \underbrace{\text{Tr}_{k+1,\ldots,N} \langle \Psi_{N,t}, \Psi_{N,t} | S_k^{\theta/2} \rangle}_{=: \gamma_{N,t}^{(k)}}) - \text{Tr}(S_k^{-\theta/2} A S_k^{-\theta/2} S_k^{\theta/2} \langle \varphi \otimes k, \varphi \otimes k | S_k^{\theta/2} \rangle)|$$

$$=: P_t^{(k)}$$

$$\leq \|S_k^{-\theta/2} A S_k^{-\theta/2}\| \text{Tr} |S_k^{\theta/2}(\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\theta/2}|,$$

where $S_k := \sum_{i=1}^{k} (1 + T_i)$. Define also the Pickl functional $a_{N,t} := \langle \Psi_{N,t}, (1 - (|\varphi_t \rangle \langle \varphi_t|)_1) \Psi_{N,t} \rangle$, see [Pi11].
Main Theorem

Theorem (Anapolitanos, Hott 2016)
Main Theorem

Theorem (Anapolitanos, Hott 2016)

Assume $T = -\Delta$ and $\varphi_0 \in H^1(\mathbb{R}^3)$.

Michael Hott

An interpolation result for the convergence to the Hartree dynamics
Main Theorem

Theorem (Anapolitanos, Hott 2016)

Assume $T = -\Delta$ and $\varphi_0 \in H^1(\mathbb{R}^3)$.

(i) For any $\theta \in [0, 1)$ there exists a constant $C > 0$ such that for any $k \in \mathbb{N}$, $N \geq k$ and any $t > 0$ we have

$$\text{Tr} \left| S_k^{\theta/2} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\theta/2} \right| \leq Ck(a_{N,t}^{\min(\frac{1}{2}, 1-\theta)} + \|\gamma_{N,t}^{(k)} - P_t^{(k)}\|_{HS}^{1-\theta}).$$
Main Theorem

Theorem (Anapolitanos, Hott 2016)

Assume $T = -\Delta$ and $\varphi_0 \in H^1(\mathbb{R}^3)$.

(i) For any $\theta \in [0, 1)$ there exists a constant $C > 0$ such that for any $k \in \mathbb{N}$, $N \geq k$ and any $t > 0$ we have

$$\text{Tr} \left| S_k^\theta \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^\theta \right| \leq C k \left(a_{N,t}^\min(\frac{1}{2}, 1-\theta) + \| \gamma_{N,t}^{(k)} - P_t^{(k)} \|_{HS}^{1-\theta} \right).$$

(ii) For all $k \in \mathbb{N}$ and $t > 0$ we have

$$\lim_{N \to \infty} \text{Tr} \left| S_k^{\frac{1}{2}} \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^{\frac{1}{2}} \right| = 0.$$
How can one apply this theorem?
How can one apply this theorem?

Theorem (Pickl 2011; Knowles, Pickl 2010)

Under the assumptions of the main theorem there exist constants $C, D \in \mathbb{R}$ independent of N, t such that for any $N \in \mathbb{N}$ and $t > 0$ we have $a_{N, t} \leq \frac{Ce^{Dt}}{N}$.
How can one apply this theorem?

Theorem (Pickl 2011; Knowles, Pickl 2010)

Under the assumptions of the main theorem there exist constants $C, D \in \mathbb{R}$ independent of N, t such that for any $N \in \mathbb{N}$ and $t > 0$ we have $a_{N,t} \leq \frac{Ce^{Dt}}{N}$.

Theorem (Chen, Lee, Schlein 2011)

We assume again the conditions of the main theorem. Then for any $k \in \mathbb{N}$ there exist $C_k, D_k \in \mathbb{R}$ such that for any $N \in \mathbb{N}$ with $N \geq k$ and any $t > 0$ we have $\|\gamma_{N,t}^{(k)} - P_t^{(k)}\|_{HS} \leq \frac{C_k e^{D_k t}}{N}$.
Corollary

Assume $T = -\Delta$ and $\phi_0 \in H^1(R^3)$. Let $k \in \mathbb{N}$ and A be a self-adjoint operator acting on $L^2(R^3) \otimes S^k$. Assume that there exists $\theta \in [0, 1)$ such that $S^{-\theta/2}kA S^{-\theta/2}k$ can be extended to a bounded operator on $L^2(R^3) \otimes S^k$ with operator norm $\|S^{-\theta/2}kA S^{-\theta/2}k\|$.

(i) If $\theta < 1$, there exist $C_k, D_k > 0$ independent of N, t such that for any $N \in \mathbb{N}$ with $N \geq k$ and any $t > 0$ we have

\[
\left| \langle \Psi_N, t, A \otimes I_N - k \Psi_N, t \rangle - \langle \phi \otimes k t, A \phi \otimes k t \rangle \right| \leq C_k e^{D_k t N \min\left(\frac{1}{2}, 1 - \theta\right)} \|S^{-\theta/2}kA S^{-\theta/2}k\|.
\]

(ii) If $\theta = 1$, then

\[
\lim_{N \to \infty} |\langle \Psi_N, t, A \otimes I_N - k \Psi_N, t \rangle - \langle \phi \otimes k t, A \phi \otimes k t \rangle| = 0 \quad \forall \ t > 0.
\]
Corollary

Assume $T = -\Delta$ and $\varphi_0 \in H^1(\mathbb{R}^3)$. Let $k \in \mathbb{N}$ and A be a self-adjoint operator acting on $L^2(\mathbb{R}^3) \otimes s^k$. Assume that there exists $\theta \in [0, 1]$ such that $S_k^{-\theta/2} A S_k^{-\theta/2}$ can be extended to a bounded operator on $L^2(\mathbb{R}^3) \otimes s^k$ with operator norm $\| S_k^{-\theta/2} A S_k^{-\theta/2} \|$.
Corollary

Assume \(T = -\Delta \) and \(\varphi_0 \in H^1(\mathbb{R}^3) \). Let \(k \in \mathbb{N} \) and \(A \) be a self-adjoint operator acting on \(L^2(\mathbb{R}^3) \otimes s^k \). Assume that there exists \(\theta \in [0, 1] \) such that \(S_k^{-\theta/2} \mathcal{A} S_k^{-\theta/2} \) can be extended to a bounded operator on \(L^2(\mathbb{R}^3) \otimes s^k \) with operator norm \(\| S_k^{-\theta/2} \mathcal{A} S_k^{-\theta/2} \| \).

(i) If \(\theta < 1 \), there exist \(C_k, D_k > 0 \) independent of \(N, t \) such that for any \(N \in \mathbb{N} \) with \(N \geq k \) and any \(t > 0 \) we have

\[
\left| \langle \Psi_{N,t}, \mathcal{A} \otimes I_{N-k} \Psi_{N,t} \rangle - \langle \varphi_{t}^{\otimes k}, \mathcal{A} \varphi_{t}^{\otimes k} \rangle \right| \leq C_k e^{D_k t} \frac{1}{N \min \left(\frac{1}{2}, 1-\theta \right)} \| S_k^{-\theta/2} \mathcal{A} S_k^{-\theta/2} \|.
\]
Corollary

Assume $T = -\Delta$ and $\varphi_0 \in H^1(\mathbb{R}^3)$. Let $k \in \mathbb{N}$ and A be a self-adjoint operator acting on $L^2(\mathbb{R}^3) \otimes s^k$. Assume that there exists $\theta \in [0, 1]$ such that $S_k^{-\theta/2} A S_k^{-\theta/2}$ can be extended to a bounded operator on $L^2(\mathbb{R}^3) \otimes s^k$ with operator norm $\|S_k^{-\theta/2} A S_k^{-\theta/2}\|$.

(i) If $\theta < 1$, there exist $C_k, D_k > 0$ independent of N, t such that for any $N \in \mathbb{N}$ with $N \geq k$ and any $t > 0$ we have

$$\left| \langle \Psi_{N,t}, A \otimes I_{N-k} \Psi_{N,t} \rangle - \langle \varphi_t \otimes^k, A \varphi_t \otimes^k \rangle \right| \leq \frac{C_k e^{D_k t}}{N \min(\frac{1}{2}, 1-\theta)} \|S_k^{-\theta/2} A S_k^{-\theta/2}\|.$$

(ii) If $\theta = 1$, then

$$\lim_{N \to \infty} \left| \langle \Psi_{N,t}, A \otimes I_{N-k} \Psi_{N,t} \rangle - \langle \varphi_t \otimes^k, A \varphi_t \otimes^k \rangle \right| = 0 \quad \forall t > 0.$$
Second main theorem
Second main theorem

Let for $r \in \mathbb{R}$

$$S_{k,r} := \sum_{i=1}^{k} (1 - \Delta x_i)^r.$$
Second main theorem

Let for \(r \in \mathbb{R} \)

\[
S_{k,r} := \sum_{i=1}^{k} (1 - \Delta_{x_i})^r.
\]

Theorem (Anapolitanos, Hott 2016)

Let \(\Psi \in \mathcal{H}_N \cap H^s(\mathbb{R}^{3N}) \), \(\varphi \in H^s(\mathbb{R}^3) \) with \(\|\Psi\|_{L^2} = \|\varphi\|_{L^2} = 1 \) for some \(s > 0 \). Then we have for any \(\theta \in [0, 1) \) the estimate

\[
\text{Tr}\left| S_{k,\theta}^{1/2} (\gamma_N^{(k)} - P^{(k)}) S_{k,\theta}^{1/2} \right| \leq k C_{\Psi, \varphi, \theta, s} (a_N^{\min(1/2, 1-\theta)} + \|\gamma_N^{(k)} - P^{(k)}\|_{HS}^{1-\theta}),
\]

where \(C_{\Psi, \varphi, \theta, s} := 2 \max\{\|S_{1,s}^{1/2} \Psi\|_2 + \|S_{1,s}^{1/2} \varphi\|_2, (\|S_{1,s}^{1/2} \Psi\|_2 + \|S_{1,s}^{1/2} \varphi\|_2)^{2\theta}\} \).
Proof of the second Theorem

Abbreviate for all $r \in \mathbb{R}$

$$A_{k,r} := S_{k,r}^{\frac{1}{2}}(\gamma_{N}^{(k)} - P^{(k)}) S_{k,r}^{\frac{1}{2}}.$$

Proof is divided into three steps:
Proof of the second Theorem

Abbreviate for all $r \in \mathbb{R}$

$$A_{k,r} := S_{k,r}^{\frac{1}{2}} (\gamma_N^{(k)} - P^{(k)}) S_{k,r}^{\frac{1}{2}}.$$

Proof is divided into three steps:

1. $\text{Tr}|A_{k,\theta s}| \leq 2\|A_{k,\theta s}\|_{HS} + \text{Tr}(A_{k,\theta s})$
Abbreviate for all $r \in \mathbb{R}$

$$A_{k,r} := S_{k,r}^{\frac{1}{2}} (\gamma_N^{(k)} - P^{(k)}) S_{k,r}^{\frac{1}{2}}.$$

Proof is divided into three steps:

1. $\text{Tr}|A_{k,\theta s}| \leq 2\|A_{k,\theta s}\|_{HS} + \text{Tr}(A_{k,\theta s})$

2. $\|A_{k,\theta s}\|_{HS} \leq k(\|S_{1,\frac{s}{2}} \Psi\|_2 + \|S_{1,\frac{s}{2}} \varphi\|_2)^{2\theta} \|\gamma_N^{(k)} - P^{(k)}\|_{HS}^{1-\theta}$
Proof of the second Theorem

Abbreviate for all $r \in \mathbb{R}$

$$A_{k,r} := S_{k,r}^{\frac{1}{2}} (\gamma_N^{(k)} - P^{(k)}) S_{k,r}^{\frac{1}{2}}.$$

Proof is divided into three steps:

1. $\text{Tr}|A_{k,\theta_s}| \leq 2\|A_{k,\theta_s}\|_{HS} + \text{Tr}(A_{k,\theta_s})$

2. $\|A_{k,\theta_s}\|_{HS} \leq k (\|S_{1,\frac{s}{2}} \Psi\|_2 + \|S_{1,\frac{s}{2}} \varphi\|_2)^{2\theta} \|\gamma_N^{(k)} - P^{(k)}\|_{HS}^{1-\theta}$

3. $\text{Tr}(A_{k,\theta_s}) \leq k \max \left(\|S_{1,\frac{s}{2}} \Psi\|_2 + \|S_{1,\frac{s}{2}} \varphi\|_2, (\|S_{1,\frac{s}{2}} \Psi\|_2 + \|S_{1,\frac{s}{2}} \varphi\|_2)^{2\theta}\right) a_N^{\min(\frac{1}{2},1-\theta)}$
Step 1

\[P_k \text{ is a rank-one projection in the } k\text{-particle space.} \]

Variational characterization of eigenvalues A_k, θ_s has at most one negative eigenvalue λ_1. Call the others (λ_n) $n \geq 2$ counting by multiplicity.

\[\text{Tr} |A_k, \theta_s| = -2\lambda_1 + \sum_{n=1}^{\infty} \lambda_n \leq 2\|A_k, \theta_s\|_{HS} + \text{Tr} A_k, \theta_s. \]
Step 1

$P^{(k)}$ is a rank-one projection in the k-particle space.
Step 1

$P^{(k)}$ is a rank-one projection in the k-particle space. Variational characterization of eigenvalues $\Rightarrow A_{k,\theta_s}$ has at most one negative eigenvalue λ_1. Call the others $(\lambda_n)_{n\geq 2}$ counting by multiplicity.
Step 1

$P^{(k)}$ is a rank-one projection in the k-particle space. Variational characterization of eigenvalues $\Rightarrow A_{k,\theta_s}$ has at most one negative eigenvalue λ_1. Call the others $(\lambda_n)_{n\geq 2}$ counting by multiplicity.

$\Rightarrow \text{Tr}|A_{k,\theta_s}| = -2\lambda_1 + \sum_{n=1}^{\infty} \lambda_n \leq 2\|A_{k,\theta_s}\| + \text{Tr}A_{k,\theta_s}$.
Step 1

$P^{(k)}$ is a rank-one projection in the k-particle space. Variational characterization of eigenvalues $\Rightarrow A_{k,\theta s}$ has at most one negative eigenvalue λ_1. Call the others $(\lambda_n)_{n\geq 2}$ counting by multiplicity.

$\Rightarrow \text{Tr}|A_{k,\theta s}| = -2\lambda_1 + \sum_{n=1}^{\infty} \lambda_n \leq 2\|A_{k,\theta s}\|_{HS} + \text{Tr}A_{k,\theta s}.$
Step 2

Let \(L(x, y) \) be the integral kernel of \(\gamma(k) N - P(k) \) with \(x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k) \in \mathbb{R}^{3k} \).

\[A_{k, \theta_\sigma} \] has an integral kernel given by

\[
\sum_{i=1}^{k} (1 - \Delta x_i) \theta_{\sigma} \leq \frac{1}{2} \left(\sum_{j=1}^{k} (1 - \Delta y_j) \theta_{\sigma} \right) L(x, y).
\]

Plancherel implies

\[
\| A_{k, \theta_\sigma} \|_{2, HS} = \int \left[\sum_{i=1}^{k} (1 + |\xi_i|^2) \theta_{\sigma} \right] \left[\sum_{j=1}^{k} (1 + |\eta_j|^2) \theta_{\sigma} \right] |\hat{L}(\xi, \eta)|^2 d\xi d\eta.
\]

Employ concavity of \(t \mapsto t^2 \) and H"older.
Step 2

$L(x, y)$ be the integral kernel of $\gamma_N^{(k)} - P^{(k)}$ with $x = (x_1, \ldots, x_k)$, $y = (y_1, \ldots, y_k) \in \mathbb{R}^{3k}$.
Step 2

$L(x, y)$ be the integral kernel of $\gamma_N^{(k)} - P^{(k)}$ with $x = (x_1, \ldots, x_k)$, $y = (y_1, \ldots, y_k) \in \mathbb{R}^{3k}$. \(\Rightarrow \) $A_{k, \theta s}$ has an integral kernel given by

$$\left[\sum_{i=1}^{k} (1 - \Delta x_i)^{\theta s} \right]^{\frac{1}{2}} \left[\sum_{j=1}^{k} (1 - \Delta y_j)^{\theta s} \right]^{\frac{1}{2}} L(x, y).$$
Step 2

Let \(L(x, y) \) be the integral kernel of \(\gamma_{N}^{(k)} - P^{(k)} \) with \(x = (x_1, \ldots, x_k) \), \(y = (y_1, \ldots, y_k) \in \mathbb{R}^{3k} \). \(\Rightarrow \) \(A_{k, \theta s} \) has an integral kernel given by

\[
\left[\sum_{i=1}^{k} (1 - \Delta_{x_i})^{\theta_s} \right]^{\frac{1}{2}} \left[\sum_{j=1}^{k} (1 - \Delta_{y_j})^{\theta_s} \right]^{\frac{1}{2}} L(x, y).
\]

Plancherel \(\Rightarrow \)

\[
\| A_{k, \theta s} \|_{HS}^2 = \int \left[\sum_{i=1}^{k} (1 + |\xi_i|^2)^{\theta_s} \right] \left[\sum_{j=1}^{k} (1 + |\eta_j|^2)^{\theta_s} \right] |\hat{L}(\xi, \eta)|^2 d\xi d\eta
\]
Step 2

$L(x, y)$ be the integral kernel of \(\gamma_N^{(k)} - P^{(k)} \) with \(x = (x_1, \ldots, x_k) \), \(y = (y_1, \ldots, y_k) \in \mathbb{R}^{3k} \). \(\Rightarrow \) \(A_{k, \theta_s} \) has an integral kernel given by

\[
\left[\sum_{i=1}^{k} (1 - \Delta x_i)^{\theta_s} \right]^{\frac{1}{2}} \left[\sum_{j=1}^{k} (1 - \Delta y_j)^{\theta_s} \right]^{\frac{1}{2}} L(x, y).
\]

Plancherel \(\Rightarrow \)

\[
\|A_{k, \theta_s}\|_{HS}^2 = \int \left[\sum_{i=1}^{k} (1 + |\xi_i|^2)^{\theta_s} \right] \left[\sum_{j=1}^{k} (1 + |\eta_j|^2)^{\theta_s} \right] |\hat{L}(\xi, \eta)|^2 \, d\xi \, d\eta
\]

Employ concavity of \(t \mapsto t^\theta \) and Hölder.
Proof of (ii) in the first Theorem

Start again with

$$\text{Tr} \left| S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}} \right| \leq 2 \left\| S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}} \right\|_{HS} + \text{Tr} \left(S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}} \right).$$
Proof of (ii) in the first Theorem

Start again with

$$
\text{Tr}|S_k^{1/2} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{1/2}| \leq 2 \|S_k^{1/2} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{1/2}\|_{HS} + \text{Tr}(S_k^{1/2} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{1/2}).
$$

Using $\frac{1}{N} \langle \Psi_{N,t}, H_N \Psi_{N,t} \rangle = \mathcal{E}(\varphi_0) = \mathcal{E}(\varphi_t)$,
Proof of (ii) in the first Theorem

Start again with

\[\text{Tr} \left| S_k^{\frac{1}{2}} \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^{\frac{1}{2}} \right| \leq 2 \left\| S_k^{\frac{1}{2}} \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^{\frac{1}{2}} \right\|_{HS} + \text{Tr} \left(S_k^{\frac{1}{2}} \left(\gamma_{N,t}^{(k)} - P_t^{(k)} \right) S_k^{\frac{1}{2}} \right). \]

Using \(\frac{1}{N} \langle \Psi_{N,t}, H_N \Psi_{N,t} \rangle = \mathcal{E}(\varphi_0) = \mathcal{E}(\varphi_t) \), obtain

\[\langle \Psi_{N,t}, -\Delta x_1 \Psi_{N,t} \rangle - \langle \varphi_t, -\Delta \varphi_t \rangle = -\frac{1}{2} \left(\langle \Psi_{N,t}, v_{12} \Psi_{N,t} \rangle - \langle \varphi_t \otimes^2, v_{12} \varphi_t \otimes^2 \rangle \right). \]
Proof of (ii) in the first Theorem

Start again with

$$\text{Tr}|S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}}| \leq 2\| S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}} \|_{HS} + \text{Tr}(S_k^{\frac{1}{2}} (\gamma_{N,t}^{(k)} - P_t^{(k)}) S_k^{\frac{1}{2}}).$$

Using $$\frac{1}{N} \langle \psi_{N,t}, H_N \psi_{N,t} \rangle = E(\varphi_0) = E(\varphi_t),$$ obtain

$$\langle \psi_{N,t}, -\Delta_{x_1} \psi_{N,t} \rangle - \langle \varphi_t, -\Delta \varphi_t \rangle = -\frac{1}{2} \left(\langle \psi_{N,t}, v_{12} \psi_{N,t} \rangle - \langle \varphi_t \otimes 2, v_{12} \varphi_t \otimes 2 \rangle \right)$$

$$\Rightarrow$$ Part (i) of the corollary applies!
For $\| \cdot \|_{HS} \to 0$, observe $\| S_k^{\frac{1}{2}} \gamma_{N,t}^{(k)} S_k^{\frac{1}{2}} \|_{HS} \leq \text{Tr}(S_k^{\frac{1}{2}} \gamma_{N,t}^{(k)} S_k^{\frac{1}{2}})$ and $\| S_k^{\frac{1}{2}} P_t^{(k)} S_k^{\frac{1}{2}} \|_{HS} = \text{Tr}(S_k^{\frac{1}{2}} P_t^{(k)} S_k^{\frac{1}{2}})$, i.e.,

$$\limsup_{N \to \infty} \| S_k^{\frac{1}{2}} \gamma_{N,t}^{(k)} S_k^{\frac{1}{2}} \|_{HS} \leq \| S_k^{\frac{1}{2}} P_t^{(k)} S_k^{\frac{1}{2}} \|_{HS}.$$
For \(\| \cdot \|_{HS} \to 0 \), observe \(\| S_k^{1/2} \gamma_{N,t}^{(k)} S_k^{1/2} \|_{HS} \leq \text{Tr}(S_k^{1/2} \gamma_{N,t}^{(k)} S_k^{1/2}) \) and
\[
\| S_k^{1/2} P_t^{(k)} S_k^{1/2} \|_{HS} = \text{Tr}(S_k^{1/2} P_t^{(k)} S_k^{1/2}),
\]
i.e.,
\[
\limsup_{N \to \infty} \| S_k^{1/2} \gamma_{N,t}^{(k)} S_k^{1/2} \|_{HS} \leq \| S_k^{1/2} P_t^{(k)} S_k^{1/2} \|_{HS}.
\]

\(\rightarrow \) Argue via taking a weakly converging subsequence.
Advantages
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i\nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1-\Delta}$).
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i\nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i\nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i\nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i\nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!
- interpolation result \rightarrow better rates for smaller $\theta < 1$.
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i\nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i\nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!

- Interpolation result \rightarrow better rates for smaller $\theta < 1$. First convergence result in the $(\theta = 1)$-case for $\varphi_0 \in H^1(\mathbb{R}^3)$!
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i\nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i\nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!

- Interpolation result \rightarrow better rates for smaller $\theta < 1$. First convergence result in the $(\theta = 1)$-case for $\varphi_0 \in H^1(\mathbb{R}^3)$!

- Easy proof!
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i \nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i \nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!

- Interpolation result \to better rates for smaller $\theta < 1$. First convergence result in the ($\theta = 1$)-case for $\varphi_0 \in H^1(\mathbb{R}^3)$!

- Easy proof!

- Result can be extended to $T = (i \nabla - A)^2$ with $A \in L^2_{loc}(\mathbb{R}^3; \mathbb{R}^3)$ (\$\bowtie [Lu12]\$) and under some further assumptions also to $T = \sqrt{1 - \Delta} \to [AHH16]$, in progress.
Advantages

- Natural assumption $\varphi_0 \in H^1$. [Lu12] requires $\varphi_0 \in H^3_A$ ($T = (i \nabla - A)^2$), [MS12] require $\varphi_0 \in H^2$ ($T = \sqrt{1 - \Delta}$). $\|\varphi_t\|_{H^3_A}$ in the case $T = (i \nabla - A)^2$ resp. $\|\varphi_t\|_{H^2}$ in the case $T = \sqrt{1 - \Delta}$ both grow super-exponentially!

- Interpolation result \rightarrow better rates for smaller $\theta < 1$. First convergence result in the ($\theta = 1$)-case for $\varphi_0 \in H^1(\mathbb{R}^3)$!

- Easy proof!

- Result can be extended to $T = (i \nabla - A)^2$ with $A \in L^2_{loc}(\mathbb{R}^3; \mathbb{R}^3)$ (\cite{Lu12}) and under some further assumptions also to $T = \sqrt{1 - \Delta} \rightarrow [AHH16]$, in progress. However, the subcritical case $\lambda \leq -4\pi$ is not covered!
References

Thank you!