MORE HYPOTHESIS TESTING FOR
TWO-WAY ANOVA

What to do after testing for interaction?

This depends on:

• Whether or not interaction is significant
 (statistically or otherwise)

• What the original questions were in designing the
 experiment

• Whether or not the analyzer wishes to engage in
 data-snooping

• The context of the experiment

• etc.

I. If we reject H_{0}^{AB} (i.e., assume there is interaction):

• The question of what a “main effect” is in the
 presence of interaction is unclear. (How can you
 “separate out” the effect of A from the interaction
 if there is interaction?)

• So it is usually inappropriate to test for main
 effects (that is, the contributions of the two factors
 A and B separately).

• Instead, it is usually preferable to use the
 equivalent cell-means model to examine contrasts
 in the treatment combinations.

II. If we do not reject H_{0}^{AB} (i.e., decide there is no
 interaction):

• We are usually interested in main effects.

• These can be tested within the complete model.

• Staying with this model is advisable rather than
 switching to the inequivalent main-effects model.
 (Switching can alter makes power, type I error
 rate.)
Testing the contribution of each factor in the complete model (equal sample sizes)

Note: We're still assuming equal sample sizes (balanced design).

We wish to test whether or not the factor A is needed in the model.

Recall that the model:

\[Y_{ijt} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijt} \]

A occurs through the terms \(\alpha_i \) and \((\alpha\beta)_{ij} \)

So “A is not needed in the model” means “the contribution of these two terms is independent of the level of A.”

That is,

\[\alpha_i + (\alpha\beta)_{ij} = \alpha_s + (\alpha\beta)_{sj} \text{ for all } i, s, \text{ and } j. \]

Thus, the null hypothesis “A is not needed in the model” can be stated as

\[H_0: \alpha_i + (\alpha\beta)_{ij} = \alpha_s + (\alpha\beta)_{sj} \text{ for all } i, s, \text{ and } j \]

with alternate hypothesis

\[H_a: \alpha_i + (\alpha\beta)_{ij} \neq \alpha_s + (\alpha\beta)_{sj} \text{ for at least one combination } i, s, \text{ and } j \]

The textbook does not explicitly mention this \(H_0 \).
Instead, it lists two possible null hypotheses:

1) \(H_0^A \): \(\alpha_1^* = \alpha_2^* = \ldots = \alpha_n^* \)

 (with \(H_0^A \): At least two of the \(\alpha_i^* \)'s are different),

where \(\alpha_i^* = \alpha_i + (\bar{c}\beta)\).

That is, the test is whether or not the levels of A, averaged over the levels of B, have the same average effect on the response.

(Note: The \(\alpha_i^* \)'s occurred previously in the notes Analysis of Variance for the Two-Way Complete Model.)

2) \(H_0^{A+AB} \): \(H_0^A \) and \(H_0^{AB} \) are both true.

What are the connections between these three possible null hypotheses?

i) Clearly, \(H_0^{A+AB} \) implies \(H_0^A \).

ii) The following calculations show that \(H_0 \) implies \(H_0^{A+AB} \):

\[
\text{If } H_0 \text{ is true, then } \alpha_i + (\alpha\beta)_{ij} = \alpha_s + (\alpha\beta)_{sj} \text{ for all } i, s, \text{ and } j.
\]

Averaging over the subscript \(j \) gives

\[
\alpha_i + (\bar{\alpha}\bar{\beta})_s = \alpha_s + (\bar{\alpha}\bar{\beta})_s \text{ for all } i \text{ and } s,
\]

which says \(H_0^A \) is true.

Subtracting this from the original equation,

\[
(\alpha\beta)_{ij} - (\bar{\alpha}\bar{\beta})_{s} = (\alpha\beta)_{s} - (\bar{\alpha}\bar{\beta})_{s} \text{ for all } i, j, \text{ and } s.
\]

Rearranging,

\[
(\alpha\beta)_{ij} - (\alpha\beta)_{sj} = (\bar{\alpha}\bar{\beta})_s - (\bar{\alpha}\bar{\beta})_s
\]

The right side is independent of \(j \), so we conclude

\[
(\alpha\beta)_{ij} - (\alpha\beta)_{sj} = (\alpha\beta)_{sq} - (\alpha\beta)_{sq} \text{ for all } i, s, j, \text{ and } q,
\]

which says there is no interaction – i.e., \(H_0^{AB} \) is true.
iii) The following shows that H_0^{A+AB} implies H_0:

If H_0^{A+AB} is true, then so is H_0^A, so

$$(\alpha \beta)_{ij} - (\alpha \beta)_{sj} = (\alpha \beta)_{si} - (\alpha \beta)_{sq}$$

for all i, s, j, and q.

Averaging over q and rearranging,

$$(\alpha \beta)_{ij} - (\bar{\alpha \beta})_{.,.} = (\alpha \beta)_{sj} - (\bar{\alpha \beta})_{.,.}$$

for all i, j, and s.

Add this to the equation for H^A to get

$$\alpha_i + (\alpha \beta)_{ij} = \alpha_i + (\alpha \beta)_{sj}$$

for all i, j, and s,

which says H_0 is true.

Combining what we have so far:

H_0 and H_0^{A+AB} are equivalent, and imply H_0^A.

iv) Does H_0^A imply H_0^{A+AB} (equivalently, H_0)?

No! Consider the example where

$$\mu = 0, \alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 0,$$

$$(\alpha \beta)_{11} = (\alpha \beta)_{22} = 0, (\alpha \beta)_{12} = (\alpha \beta)_{21} = 1.$$

Thus

$$Y_{11} = \epsilon_{11}, Y_{12} = 1 + \epsilon_{12}, Y_{21} = 1 + \epsilon_{21}, Y_{22} = \epsilon_{22}.$$

Then

$$\alpha_1^* = \alpha_1 + (\bar{\alpha \beta})_{1, .} = 0 + (0 + 1)/2 = 1/2$$

and

$$\alpha_2^* = \alpha_2 + (\bar{\alpha \beta})_{2, .} = 0 + (1+0)/2 = 1/2,$$

so H_0^A is true.

But H_0^{AB} is not true. (Draw an interaction plot!)
The test for H_0^A is the default in most software.

We will take the perspective that it does not make sense to test for a main effect of A unless there is no interaction, so using this test will not cause problems.

(But if you ever see a paper that tests for “main effects” when there is interaction, be cautious in the interpretation. Do not interpret the null hypothesis as saying “A has no effect;” it just means that “the levels of A, averaged over the levels of B, have the same average effect on the response.”)

To test H_0^A, compare the full model with the reduced model where H_0^A is true.

If sample sizes are equal, it can be shown that the least squares estimate of $E[Y_{ijt}]$ under the reduced model is

$$\bar{Y}_{ij} - \bar{Y}_{i.} + \bar{Y}_{..} ,$$

giving sum of squares for the reduced model

$$\text{ss}E_0^A = \sum \sum \sum (y_{ijt} - \bar{Y}_{ij} + \bar{Y}_{i.} - \bar{Y}_{..})^2 ,$$

which by appropriate algebraic manipulations becomes

$$\text{ss}E_0^A = \sum \sum \sum (y_{ijt} - \bar{Y}_{ij})^2 + \text{br} \sum (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

$$= \text{ss}E + \text{br} \sum (\bar{Y}_{i.} - \bar{Y}_{..})^2$$
So the sum of squares for treatment factor A is

$$ssA = ssE_0^A - ssE$$

$$= br \sum_{i=1}^{a} (\bar{Y}_{i..} - \bar{Y}_{...})^2$$

$$= (1/br) \sum_{i=1}^{a} (Y_{i..})^2 - (Y_{...})^2/abr,$$

which resembles the formula for ssT used to test equality of effects in one-way analysis of variance.

Our reasoning: If H_0^A is true, then ssA should be small compared to ssE, so we will have evidence lending doubt to H_0^A if ssA/ssE is unusually large.

If SSA is the random variable corresponding to ssA, it can be shown that when H_0^A is true and sample sizes are equal,

i) $SSA/\sigma^2 \sim \chi^2(a-1)$

ii) SSA and SSE are independent.

Thus, when sample sizes are equal and H_0^A is true,

$$\frac{SSA(a-1)\sigma^2}{SSE(n-\text{ab})\sigma^2} = \frac{MSA}{MSE} \sim F(a-1,n-\text{ab})$$

Since msA/msE is just a scalar multiple of the ratio ssA/ssE, we can use msA/msE as a test statistic, rejecting for large values.
Similarly, we can form the sum of squares for treatment factor B and obtain an F-test based on

\[
\frac{SSB}{SSE} \frac{(b-1)\sigma^2}{(n-ab)\sigma^2} = \frac{MSB}{MSE} \sim F(b-1,n-ab)
\]

for

\[H_0^B : \beta_1^* = \beta_2^* = \ldots = \beta_b^* \]

where \(\beta_j^* = \beta_j + (\overline{\alpha\beta})_j \)

That is, the test is whether or not the levels of B, averaged over the levels of A, have the same average effect on the response.

The alternate hypothesis is

\[H_a^B : \text{At least two of the } \beta_j^*'s \text{ are different.} \]

Analysis of Variance Table

For each of the three tests (for interaction, effect of A and effect of B), we have a corresponding sum of squares, \(ssAB, ssA, \) and \(ssB \). We also have the error sum of squares, \(ssE \). If we add up the formulas for these three sums of squares and do appropriate algebraic manipulations, we will get (still assuming equal sample sizes)

\[
ssA + ssB + ssAB + ssE = \sum \sum \sum (y_{ijt} - \overline{y})^2.
\]

This last sum of squares is called the total sum of squares, denoted \(ssT \) or \(sstot \). It can be seen as a measure of the total variability of the data without taking into account either A or B.

Similarly, \(ssE \) is a measure of the variability taking into account A, B and their interaction; \(ssA \) is a measure of the variability taking B into account but not A, and \(ssB \) is a measure of the variability taking A into account but not B.
The sums of squares and the additional information used in the tests for A, B and AB are traditionally summarized in an *Analysis of Variance Table* with one line each for A, B, AB, error, and "total sum of squares".

Interpreting ANOVA tests

Interpretation requires thought -- we need to take into account the purpose of the study, the context, multiple comparisons, and whether or not we are willing to do data snooping. Interpretation can sometimes be frustrating -- for example, what if the test for interaction is significant, but the test for one of the factors is not?

Examples: Battery and reaction time.

Note: When sample sizes are unequal, the formulae for the sums of squares are more complicated, and the corresponding random variables are not independent. More on this later.