CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS (Section 17.3.5)

These play the role for random effects that confidence intervals for contrasts play for fixed effects.

Confidence intervals for \(\sigma^2 \): Constructed just as for fixed effects; see Section 3.4.6 or the class notes *Choosing Sample Sizes.*

Confidence intervals involving \(\sigma_T^2 \):

Three types of are of interest:

- For \(\sigma_T^2 \)
- For \(\sigma_T^2 / \sigma^2 \)
- For \(\sigma_T^2 / (\sigma_T^2 + \sigma^2) \)

The first cannot be done exactly, so we’ll take that last.

Confidence intervals for \(\sigma_T^2 / \sigma^2 \):

We use the fact (see notes *Testing for Treatment Effect as a Proportion of Error Variance*) that

\[
\frac{\frac{MST}{c}}{\frac{(c\sigma_T^2 + \sigma^2)}{MSE}} \sim F(v-1, n-v),
\]

where \(c \) is a certain constant defined in terms of \(n, v \), and the \(r_i; \ c = r \) if the design is balanced) (See notes *Random Effects Models* or Section 17.3)

If we want a \((1-\alpha)100\%\) CI for \(\sigma_T^2 / \sigma^2 \), take

\[
f_1 = F(v-1, n-v, 1-\alpha/2)
\]

(so that there is area \(\alpha/2 \) to the left of \(f_1 \) in the \(F(v-1, n-v) \) distribution), and

\[
f_2 = F(v-1, n-v, \alpha/2)
\]

(so that there is area \(\alpha/2 \) to the right of \(f_2 \) in the \(F(v-1, n-v) \) distribution).

[Picture!]
Then
\[\Pr (f_1 \leq \frac{\text{MST}}{\text{MSE}} \leq f_2) = 1 - \alpha \]

Equivalently:
\[\Pr (f_1 \leq \left[\frac{\text{MST}}{\text{MSE}} \right] \left[\frac{\sigma^2}{(\text{MST}/\text{MSE})(1/f_1) - 1} \right] \leq f_2) = 1 - \alpha, \]

Working with the left inequality:
\[(c\sigma_T^2 + \sigma^2)/\sigma^2 \leq (\text{MST}/\text{MSE})(1/f_1) \]
\[c(\sigma_T^2/\sigma^2) + 1 \leq (\text{MST}/\text{MSE})(1/f_1) \]
\[c(\sigma_T^2/\sigma^2) \leq (\text{MST}/\text{MSE})(1/f_1) - 1 \]

Working with the right inequality: is equivalent to
\[(\text{MST}/\text{MSE})(1/f_2) \leq (c\sigma_T^2 + \sigma^2)/\sigma^2 \]
\[= c(\sigma_T^2/\sigma^2) + 1 \]
\[(\text{MST}/\text{MSE})(1/f_2) - 1 \leq c(\sigma_T^2/\sigma^2) \]

So
\[\Pr ((1/c)[(\text{MST}/\text{MSE})(1/f_2) - 1] \leq \sigma_T^2/\sigma^2 \]
\[\leq (1/c)[(\text{MST}/\text{MSE})(1/f_1) - 1]) = 1 - \alpha. \]

Thus desired confidence interval has left endpoint
\[(1/c)[(\text{MST}/\text{MSE})(1/f_2) - 1] \]
and right endpoint
\[(1/c) (\text{MST}/\text{MSE})(1/f_1) - 1) \]

Here, “(a, b) is a 95% confidence interval for \(\sigma_T^2/\sigma^2 \)”

Means:

Note: Conceivably the left hand endpoint could be less than 0, which is unrealistic. If it is < 0, do not give in to the temptation to replace it by zero; that would give the false impression of a smaller confidence interval than warranted.

Example: Use the loom data to find a 95% confidence interval for \(\sigma_T^2/\sigma^2 \).
Confidence intervals for $\frac{\sigma_T^2}{(\sigma_T^2 + \sigma^2)} = \text{the proportion of the total variance if the response attributable to the treatment level:}

Such confidence intervals are readily obtained from confidence intervals for σ_T^2/σ^2 as follows.

Divide both numerator and denominator of $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ by σ^2 to obtain

$$\frac{\sigma_T^2}{\sigma_T^2 + \sigma^2} = \frac{\sigma_T^2/\sigma^2}{(\sigma_T^2/\sigma^2) + 1} = f\left(\frac{\sigma_T^2}{\sigma^2}\right),$$

where $f(x) = x/(x + 1)) = \frac{1}{1 + \frac{1}{x}}$.

From the last formula for $f(x)$, we can see that $f(x)$ is an increasing function of x. i.e., $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ is an increasing function of σ_T^2/σ^2.

Thus if (a,b) is a $(1-\alpha)100\%$ confidence interval for $\frac{\sigma_T^2}{\sigma^2}$, then $(f(a), f(b)) = (a/(a + 1), b/(b + 1))$ is a $(1-\alpha)100\%$ confidence interval for $\sigma_T^2/(\sigma_T^2 + \sigma^2)$.

Note: $\sigma_T^2/(\sigma_T^2 + \sigma^2)$ is sometimes called the “population intraclass correlation coefficient”

Caution: The phrase “intraclass correlation coefficient” is also used to refer to other things.

Example: With the loom data, find a 95% confidence interval for $\sigma_T^2/(\sigma_T^2 + \sigma^2)$.
Confidence intervals for σ_T^2: There is no exact method. There are several approximate methods. Here’s one. It’s useful if σ_T^2 is not too small, and is adaptable to more complicated models.

Recall that $U = (1/c)(\text{MST} - \text{MSE})$ is an unbiased estimator of σ_T^2. If we knew its distribution, we could use that to get confidence intervals for σ_T^2 in the usual way.

However, U does not have a tractable distribution.

But it is true that

$$U/\sigma_T^2 \sim \chi^2(x)/x,$$

where

$$x = \frac{(\text{msT} - \text{msE})^2}{(v-1) + (\text{msE})/n}.$$

(Note: This formula is given correctly on p. 605 of the text, but incorrectly on p. 600.)

x from this formula is not usually an integer, so we need to interpret degrees of freedom in the χ^2 distribution as the parameter in a formula for the pdf. (This is analogous to the two-sample, unequal variance t-test.)

Thus (Draw a picture!)

$$P\left(\chi^2(x, 1-\alpha/2) \prec xU/\sigma_T^2 \prec \chi^2(x, \alpha/2)\right) \approx 1 - \alpha,$$

where \prec means “is less than or approximately equal to”, and $\chi^2(x, \beta)$ is the value with proportion β of the $\chi^2(x)$ distribution to its right.

The left and right approximate inequalities are, respectively, equivalent to

$$\sigma_T^2 \prec xU/\chi^2(x, 1-\alpha/2) \quad \text{and} \quad \sigma_T^2 \succ xU/\chi^2(x, \alpha/2).$$

Thus if

$$u = (1/c)(\text{msT} - \text{msE})$$

(which is our estimate for σ_T^2),

then

$$(xu/\chi^2(x, \alpha/2), xu/\chi^2(x, 1 - \alpha/2))$$

is an approximate $(1-\alpha)100\%$ confidence interval for σ_T^2.

Example: With the loom data, find a 95% confidence interval for σ_T^2.