INFERENCE FOR ONE-WAY ANOVA

To test equality of means for different treatments/levels, we can use the null hypothesis

 $H_0: \mu_1 = \mu_2 = \ldots = \mu_v$

Rephrase:

- 1. In terms of effects:
- 2. In terms of differences of effects: _____
- 3. In terms of contrasts $\tau_i \overline{\tau}$, where $\overline{\tau} = \frac{1}{\nu} \sum_{i=1}^{\nu} \tau_i$:

The *treatment degrees of freedom* is the minimum number of equations needed to state the null hypothesis, in other words ______.

Alternate hypothesis: H_a: _____

Idea of the test: Compare ssE under the *full* model (with all parameters) with the error sum of squares ssE_0 under the *reduced* model -- i.e., the one assuming H₀ is true.

To calculate ssE₀: If H₀ is true, let τ be the common value of the τ_i 's. Then the reduced model is

• $Y_{it} = \mu + \tau + \varepsilon_{it}^0$

•
$$\varepsilon_{it}^0 \sim N(0, \sigma^2)$$

• the ε_{it}^{0} 's are independent,

where ε_{it}^{0} denotes the itth error in the reduced model.

To find ssE₀, we use least squares to minimize $g(m) = \sum_{i=1}^{v} \sum_{t=1}^{r_i} (y_{it} - m)^2$:

$$g'(m) = \sum_{i=1}^{\nu} \sum_{t=1}^{r_i} 2(-1)(y_{it} - m) = 0,$$

which yields estimate \overline{y} .. for $\mu + \tau$ -- that is, the least squares estimate of $\mu + \tau$ is $(\mu + \tau)^{\wedge} = \overline{y}$.. (By abuse of notation, we call this $\hat{\mu} + \hat{\tau}$). So

$$ssE_0 = \sum_{i=1}^{v} \sum_{t=1}^{r_i} (y_{it} - \overline{y}..)^2,$$

which can be shown (proof might be homework) to equal $\sum_{i=1}^{v} \sum_{t=1}^{v_i} y_{it}^2 - n(\overline{y}..)^2$

Note that ssE and ssE₀ can be considered as minimizing the same expression, but over different sets: ssE minimizes $\sum_{i=1}^{t} \sum_{t=1}^{r_i} (y_{it} - m - t_i)^2$ over the set of all v + 1-tuples $(m, t_1, t_2, ..., t_v)$, whereas ssE₀ can be considered as minimizing the same expression over the subset where all t_i's are zero. Thus ssE₀ must be at least as large as ssE: ssE₀ \geq ssE.

However, if H_0 is true, then ssE and ssE₀ should be about the same. This suggests the idea of using the ratio (ssE₀-ssE)/ssE as a test statistic for the null hypothesis: If H_0 is true, this

ratio should be small; so an ususually large ratio would be reason to reject the null hypothesis.

The difference ssE_0 -ssE is called the *sum of squares for treatment*, or *treatment sum of squares*, denoted ssT. Using the alternate expressions for ssE_0 and ssE, we have:

$$ssT = ssE_{0} - ssE = \sum_{i=1}^{\nu} \sum_{t=1}^{r_{i}} y_{it}^{2} - n(\overline{y}..)^{2} - \left(\sum_{i=1}^{\nu} \sum_{t=1}^{r_{i}} y_{it}^{2} - \sum_{i=1}^{\nu} r_{i}(\overline{y}_{i}.)^{2}\right)$$
$$= \sum_{i=1}^{\nu} r_{i}(\overline{y}_{i}.)^{2} - n(\overline{y}..)^{2}$$
$$= \sum_{i=1}^{\nu} \frac{(y_{i}.)^{2}}{r_{i}} - \frac{(y_{i}.)^{2}}{n} \quad \text{(using definitions)}$$
$$= \sum_{i=1}^{\nu} r_{i}(\overline{y}_{i}. - \overline{y}..)^{2} \quad \text{(possible homework)}$$

This last expression can be considered as a "between treatments" sum of squares --- we are comparing each treatment sample mean \overline{y}_{i} , with the grand (overall) mean \overline{y}_{i} . By

contrast, our denominator, $ssE = \sum_{i=1}^{v} \sum_{i=1}^{r_i} (y_{ii} - \overline{y}_i)^2$ is a "within treatments" sum of squares: it compares each value with the mean for the treatment group from which the value was

Using the model assumptions, it can be proved that:

• $ssE/\sigma^2 \sim \chi^2(n - v)$

obtained.

- If H_0 is true, ssT/ $\sigma^2 \sim \chi^2(v-1)$
- If H₀ is true, then ssT and ssE are independent.

Thus, $\underline{if} H_0$ is true,

$$\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)} \sim \mathbf{F}_{v-1,n-v}$$

Now $\frac{ssT/\sigma^2(v-1)}{ssE/\sigma^2(n-v)}$ simplifies to $\frac{ssT/(v-1)}{ssE/(n-v)}$, which we can calculate from our sample. We originally wanted to test ssT/ssE, but $\frac{ssT/(v-1)}{ssE/(n-v)}$ is just a constant multiple of ssT/ssE, so is good enough for our purposes: $\frac{ssT/(v-1)}{ssE/(n-v)}$ will be unusually large exactly when ssT/ssE is unusually large. Thus, we can use an F test, with test statistic $\frac{ssT/(v-1)}{ssE/(n-v)}$, to test our hypothesis.

Note: We can look at ssT/(v-1) and ssE/(n-v) as we did in the equal-variance, twosample t-test: ssE/(n-v) is a pooled estimate of the common variance σ^2 , and if H₀ is true, then ssT/(v - 1) can be regarded as an estimate of σ^2 .

Notation: ssT/(v-1) is called msT (mean square for treatment or treatment mean square and ssE/(n-v) is called msE (mean square for error or error mean square). So the test statistic is F = msT/msE.