PROBABILITY PLOTS

Many tests or other procedures in statistics assume a certain (e.g., normal) distribution. Some procedures are robust (i.e., still work pretty well) to some departures from assumptions, but often not to dramatic ones.

This raises the question: How to judge whether data come from a given distribution?

Histograms don't serve this purpose well -- e.g., bin sizes, samples sizes, and their interaction cause problems.

Probabilty plots (also known as Q-Q plots or quantile plots) are not perfect, but somewhat better. The idea:

- Order the data: \(y_1 \leq y_2 \leq \ldots \leq y_n \).
- Compare them with \(q_1 \leq q_2 \leq \ldots \leq q_n \), where

\[
q_k = \text{the expected value (as approximated by computer) of the kth smallest member of a simple random sample of size } n \text{ from the distribution of interest.}
\]

If the data come from this distribution, we expect \(y_k \approx q_k \), so the graph will lie approximately along the line \(y = x \).

Variation often used to test for normality:

Take the \(q \)'s from the standard normal distribution. So if the \(y \)'s are sampled from an \(N(\mu, \sigma) \) distribution, then the transformed data \(\frac{y_k - \mu}{\sigma} \) comes from a standard normal distribution, so we expect

\[
\frac{y_k - \mu}{\sigma} \approx q_k
\]

In other words, if the \(y_k \)'s are sampled from an \(N(\mu, \sigma) \) distribution, then

\[
y_k \approx \sigma q_k + \mu,
\]

so the graph should lie approximately on a straight line with slope and intercept \(\sigma \) and \(\mu \), respectively.