REGRESSION MODELS

One approach: Use theoretical considerations to develop a model for the mean function or other aspects of the conditional distribution.

The next two approaches require some terminology:

Error: \[e|x = Y|(X = x) - E(Y|X = x) = Y|x - E(Y|x) \] for short

- So \(Y|x = E(Y|x) + e|x \) (Picture this …)
- \(E|x \) is a random variable
- \(E(e|x) = E(Y|x) - E(Y|x) = 0 \)
- \(\text{Var}(e|x) = \)
- The distribution of \(e|x \) is

Second approach:

Bivariate Normal Model: Suppose \(X \) and \(Y \) have a bivariate normal distribution.

Recall:
- \(Y|x \) is normal
- \(E(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X) \) (linear mean function)
- \(\text{Var}(Y|x) = \sigma_Y^2 (1 - \rho^2) \) (constant variance)

Thus:

- \(E(Y|x) = a + bx \)
- \(\text{Var}(Y|x) = \sigma^2 \)

where

\[b = \]
\[a = \]
\[\sigma^2 = \]
Implications for e|x:

- e|x ~

Third approach: Model the conditional distributions

"The" Simple Linear Regression Model

Version I:

Only one assumption: $E(Y|x)$ is a linear function of x.

Typical notation: $E(Y|x) = \eta_0 + \eta_1 x$ (or $E(Y|x) = \beta_0 + \beta_1 x$)

Equivalent formulation: $Y|x = \eta_0 + \eta_1 x + e|x$

Interpretations of parameters: (Picture!)

η_1:

η_0: (if ...)

When model fits:
- X, Y bivariate normal
- Other situations
 Example: Blood lactic acid
 Why is this not bivariate normal?
- Model might also be used when mean function is not linear, but linear approximation is reasonable.

Version II: Two assumptions:

1. $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)
2. $\text{Var}(Y|x) = \sigma^2$ (constant variance)

Equivalent formulation:

1’. $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)
2’. $\text{Var}(e|x) = \sigma^2$ (constant error variance)

[Draw a picture!]
When model fits:

- If X and Y have a bivariate normal distribution.
- Credible (at least approximately) in many other situations as well, for transformed variables if not for the original predictor. (i.e., it's often useful)

Until/unless otherwise stated, we will henceforth assume the Version II model -- i.e., we all assume conditions (1) and (2) (equivalently, (1') and (2')).

Thus we have three parameters:

\[\eta_0, \eta_1 \] (which determine \(E(Y|x) \)) and \(\sigma^2 \) (which determines \(\text{Var}(Y|x) \))

The goal: To estimate \(\eta_0 \) and \(\eta_1 \) (and later \(\sigma^2 \)) from data.

Notation: The estimates of \(\eta_0 \) and \(\eta_1 \) will be called \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \), respectively. From \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \), we obtain an estimate

\[\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x \]

of \(E(Y|x) \).

Note: \(\hat{E}(Y|x) \) is the same notation we used earlier for the lowess estimate of \(E(Y|x) \). Be sure to keep the two estimates straight.

More terminology:

- We label our data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\).
- \(\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 x_i \) is our resulting estimate \(\hat{E}(Y|x_i) \) of \(E(Y|x_i) \). It is called the \(i^{th} \) fitted value or \(i^{th} \) fit.
- \(\hat{e}_i = y_i - \hat{y}_i \) is called the \(i^{th} \) residual.

Note: \(\hat{e}_i \) (the residual) is analogous to but not the same as \(e|x_i \) (the error). Indeed, \(\hat{e}_i \) can be considered an estimate of the error \(e_i = y_i - E(Y|x_i) \).

Picture:

Least Squares Regression

- Method of obtaining estimates $\hat{\eta}_0$ and $\hat{\eta}_1$ for η_0 and η_1

Consider lines $y = \eta_0 + \eta_1x$. We want the one that is "closest" to the data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ collectively.

What does "closest" mean? Various possibilities:

1. The usual math meaning: shortest perpendicular distance to point.
 - Problems:
 - Gets unwieldy quickly.
 - We're really interested in getting close to y for a given x -- which suggests:

2. Minimize $\sum d_i$, where $d_i = y_i - (\eta_0 + \eta_1 x_i) = \text{vertical distance from point to candidate line}$. (Note: If the candidate line is the desired best fit then $d_i = \text{.}$.)
 - Problem: Some d_i's will be positive, some negative, so will cancel out in the sum.
 - This suggests:

3. Minimize $\sum |d_i|$. This is feasible with modern computers, and is sometimes done.
 - Problems:
 - This can be computationally difficult and lengthy.
 - The solution might not be unique.
 - Example:
 - The method does not lend itself to inference about the fit.

4. Minimize $\sum d_i^2$
 - This works!
 - See demo.

Terminology:

- $\sum d_i^2$ is called the *residual sum of squares* (denoted $\text{RSS}(\eta_0, \eta_1)$) or the *objective function*.
- The values of η_0 and η_1 that minimize $\text{RSS}(\eta_0, \eta_1)$ are denoted $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively, and called the *ordinary least squares* (or OLS) estimates of η_0 and η_1.