REGRESSION MODELS

One approach: Use theoretical considerations to develop a model for the mean function or other aspects of the conditional distribution.

The next two approaches require some terminology:

Error: \[e|x = Y|x - E(Y|x) = Y|x - E(Y|x) \text{ for short} \]

- So \(Y|x = E(Y|x) + e|x \) (Picture this …)
- \(e|x \) is a random variable
- \(E(e|x) = E(Y|x) - E(Y|x) = E(Y|x) - E(Y|x) = 0 \)
- \(\text{Var}(e|x) = \)
- The distribution of \(e|x \) is

Second approach:

Bivariate Normal Model: Suppose \(X \) and \(Y \) have a bivariate normal distribution.

Recall:
- \(Y|x \) is normal
- \(E(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X) \) (linear mean function)
- \(\text{Var}(Y|x) = \sigma_Y^2 (1 - \rho^2) \) (constant variance)

Thus:
- \(E(Y|x) = a + bx \)
- \(\text{Var}(Y|x) = \sigma^2 \)

where
- \(b = \)
- \(a = \)
- \(\sigma^2 = \)

Implications for \(e|x \):
- \(e|x \sim \)
Third approach: Model the conditional distributions

"The" Simple Linear Regression Model

Version 1:

Only one assumption: \(E(Y|x) \) is a linear function of \(x \).

Typical notation: \(E(Y|x) = \eta_0 + \eta_1 x \) (or \(E(Y|x) = \beta_0 + \beta_1 x \))

Equivalent formulation: \(Y|x = \eta_0 + \eta_1 x + \epsilon|x \)

Interpretations of parameters:

\(\eta_1 \):

\(\eta_0 \) : (if ...)

When model fits:

- \(X, Y \) bivariate normal
- Other situations
 - Example: Blood lactic acid
 - Why is this not bivariate normal?
- Model might also be used when mean function is not linear, but linear approximation is reasonable.

Version 2: Two assumptions:

1. \(E(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)
2. \(\text{Var}(Y|x) = \sigma^2 \) (constant variance)

Equivalent formulation:

1'. \(E(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)
2'. \(\text{Var}(\epsilon|x) = \sigma^2 \) (constant error variance)

[Situations where the model fits:]

- If \(X \) and \(Y \) have a bivariate normal distribution.
- Credible (at least approximately) in many other situations as well, for transformed variables if not for the original predictor. (i.e., it's often useful)

Until/unless otherwise stated, we will henceforth assume the Version 2 model -- i.e., we will assume conditions (1) and (2) (equivalently, (1') and (2')).
Thus we have three parameters:

\(\eta_0, \eta_1 \) (which determine \(\mathbb{E}(Y|x) \)) and \(\sigma^2 \) (which determines \(\text{Var}(Y|x) \)).

The goal: To estimate \(\eta_0 \) and \(\eta_1 \) (and later \(\sigma^2 \)) from data.

Notation: The estimates of \(\eta_0 \) and \(\eta_1 \) will be called \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \), respectively. From \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \), we obtain an estimate

\[
\hat{\mathbb{E}}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x
\]

of \(\mathbb{E}(Y|x) \).

Note: \(\hat{\mathbb{E}}(Y|x) \) is the same notation we used earlier for the lowess estimate of \(\mathbb{E}(Y|x) \). Be sure to keep the two estimates straight.

More terminology:

- We label our data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\).
- \(\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 x_i \) is our resulting estimate \(\hat{\mathbb{E}}(Y|x_i) \) of \(\mathbb{E}(Y|x_i) \). It is called the \(i^{th} \) fitted value or \(i^{th} \) fit.
- \(\hat{e}_i = y_i - \hat{y}_i \) is called the \(i^{th} \) residual.

Note: \(\hat{e}_i \) (the residual) is analogous to but not the same as \(e|x_i \) (the error). Indeed, \(\hat{e}_i \) can be considered an estimate of the error \(e_i = y_i - \mathbb{E}(Y|x_i) \).

Draw a picture:

Least Squares Regression: *A method of obtaining estimates* \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \) for \(\eta_0 \) and \(\eta_1 \).

Consider lines \(y = h_0 + h_1 x \). We want the one that is "closest" to the data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) collectively.

What does "closest" mean?

Various possibilities:
1. The usual math meaning: shortest perpendicular distance to point.
 Problems:
 • Gets unwieldy quickly.
 • We're really interested in getting close to y for a given x -- which suggests:

2. Minimize \(\sum d_i \), where \(d_i = y_i - (h_0 + h_1 x_i) \) = vertical distance from point to candidate line. (Note: If the candidate line is the desired best fit then \(d_i = 0 \).) Problem: Some \(d_i \)'s will be positive, some negative, so will cancel out in the sum. This suggests:

3. Minimize \(\sum |d_i| \). This is feasible with modern computers, and is sometimes done.
 Problems:
 • This can be computationally difficult and lengthy.
 • The solution might not be unique.
 Example:
 • The method does not lend itself to inference about the fit.

4. Minimize \(\sum d_i^2 \)
 This works!
 See demo.

Terminology:
• \(\sum d_i^2 \) is called the *residual sum of squares* (denoted \(\text{RSS}(h_0, h_1) \)) or the *objective function*.
• The values of \(h_0 \) and \(h_1 \) that minimize \(\text{RSS}(h_0, h_1) \) are denoted \(\hat{h}_0 \) and \(\hat{h}_1 \), respectively, and called the *ordinary least squares* (or *OLS*) *estimates* of \(\eta_0 \) and \(\eta_1 \).