STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

Situation:
Assumption: \(E(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)

Data: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Least squares estimator: \(\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x \), where
\[
\hat{\eta}_1 = \frac{SXY}{SXX}
\]
\[
\hat{\eta}_0 = \bar{y} - \hat{\eta}_1 \bar{x}
\]
\[
SXX = \sum (x_i - \bar{x})^2 = \sum x_i (x_i - \bar{x})
\]
\[
SXY = \sum (x_i - \bar{x}) (y_i - \bar{y}) = \sum (x_i - \bar{x}) y_i
\]

Comment: If we also assume \(e|x \) (equivalently, \(Y|x \)) is normal with constant variance, then the least squares estimates are the same as the maximum likelihood estimates of \(\eta_0 \) and \(\eta_1 \).

Properties of \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \):

1) \[
\hat{\eta}_1 = \frac{SXY}{SXX} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{SXX} = \sum_{i=1}^{n} \frac{(x_i - \bar{x})}{SXX} y_i = \sum_{i=1}^{n} c_i y_i
\]
where \(c_i = \frac{(x_i - \bar{x})}{SXX} \)

Thus: If the \(x_i \)'s are fixed (as in the blood lactic acid example), then \(\hat{\eta}_1 \) is a linear combination of the \(y_i \)'s.

Note: Here we want to think of each \(y_i \) as a random variable with distribution \(Y|x_i \). Thus, if each \(Y|x_i \) is normal, then \(\hat{\eta}_1 \) is also normal. If the \(Y|x_i \)'s are not normal but \(n \) is large, then \(\hat{\eta}_1 \) is approximately normal. This will allow us to do inference on \(\hat{\eta}_1 \). (Details later.)

2) \[
\sum c_i = \sum \frac{(x_i - \bar{x})}{SXX} = \frac{1}{SXX} \sum (x_i - \bar{x}) = 0 \quad \text{(as seen in establishing the alternate expression for } SXX)\]

3) \[
\sum x_i c_i = \sum x_i \frac{(x_i - \bar{x})}{SXX} = \frac{1}{SXX} \sum x_i (x_i - \bar{x}) = \frac{SXX}{SXX} = 1.
\]

Remark: Recall the analogous properties for the residuals \(\hat{e}_i \).
4) \(\hat{\eta}_b = \bar{y} - \hat{\eta}_c \bar{x} = \frac{1}{n} \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} c_i y_i \bar{x} = \sum_{i=1}^{n} \left(\frac{1}{n} - c_i \bar{x} \right) y_i \), also a linear combination of the \(y_i \)'s, hence …

5) The sum of the coefficients in (4) is \(\sum_{i=1}^{n} \left(\frac{1}{n} - c_i \bar{x} \right) = \sum_{i=1}^{n} \left(\frac{1}{n} \right) - \bar{x} \sum_{i=1}^{n} c_i = n \left(\frac{1}{n} \right) - \bar{x}0 = 1. \)

Sampling distributions of \(\hat{\eta}_b \) and \(\hat{\eta}_c \):

Consider \(x_1, \ldots, x_n \) as fixed (i.e., condition on \(x_1, \ldots, x_n \)).

Model Assumptions ("The" Simple Linear Regression Model Version III):

- \(\text{E}(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)
- \(\text{Var}(Y|x) = \sigma^2 \) (Equivalently, \(\text{Var}(e|x) = \sigma^2 \)) (constant variance)
- (NEW) \(y_1, \ldots, y_n \) are independent observations. (independence)

The new assumption means we can consider \(y_1, \ldots, y_n \) as coming from \(n \) independent random variables \(Y_1, \ldots, Y_n \), where \(Y_i \) has the distribution of \(Y|x_i \).

Comment: We do not assume that the \(x_i \)'s are distinct. If, for example, \(x_1 = x_2 \), then we are assuming that \(y_1 \) and \(y_2 \) are independent observations from the same conditional distribution \(Y|x_i \).

Since \(y_1, \ldots, y_n \) are random variables, so is \(\hat{\eta}_c \) -- but it depends on the choice of \(x_1, \ldots, x_n \), so we can talk about the conditional distribution \(\hat{\eta}_c | x_1, \ldots, x_n \).

Expected value of \(\hat{\eta}_c \) (as the \(y \)'s vary):

\[
\text{E}(\hat{\eta}_c | x_1, \ldots, x_n) = \text{E} \left(\sum_{i=1}^{n} c_i y_i | x_1, \ldots, x_n \right) \\
= \sum_{i=1}^{n} c_i \text{E}(y_i | x_1, \ldots, x_n) \\
= \sum_{i=1}^{n} c_i \text{E}(y_i | x_i) \\
= \sum_{i=1}^{n} c_i \left(\eta_0 + \eta_1 x_i \right) \\
= \eta_0 \sum_{i=1}^{n} c_i + \eta_1 \sum_{i=1}^{n} c_i x_i \\
= \eta_0 \bar{c} + \eta_1 \bar{c} \bar{x} = \eta_1
\]

Thus: \(\hat{\eta}_c \) is an unbiased estimator of \(\eta_1 \).

Variance of \(\hat{\eta}_c \) (as the \(y \)'s vary):

\[
\text{Var}(\hat{\eta}_c | x_1, \ldots, x_n) = \text{Var} \left(\sum_{i=1}^{n} c_i y_i | x_1, \ldots, x_n \right) \\
= \sum_{i=1}^{n} c_i^2 \text{Var}(y_i | x_1, \ldots, x_n)
\]
\[
\begin{align*}
= & \sum c_i^2 \text{Var}(y_i|x_i) \\
= & \sum c_i^2 \sigma^2 \\
= & \sigma^2 \sum c_i^2 \\
= & \sigma^2 \sum \left(\frac{(x_i - \bar{x})}{SXX}\right)^2 \\
= & \frac{\sigma^2}{(SXX)^2} \sum (x_i - \bar{x})^2 \\
= & \frac{\sigma^2}{SXX}
\end{align*}
\]

For short: \(\text{Var}(\hat{\eta}) = \frac{\sigma^2}{SXX} \)

\[\therefore \text{s.d.}(\hat{\eta}) = \frac{\sigma}{\sqrt{SXX}}\]

Comments: This is vaguely analogous to the sampling standard deviation for a mean \(\bar{y} \):

\[\text{s.d. (estimator)} = \frac{\text{population standard deviation}}{\sqrt{\text{something}}\text{.}}\]

However, here the "something," namely \(SXX \), is more complicated. However, we can still analyze this formula to see how the standard deviation varies with the conditions of sampling. For \(\bar{y} \), the denominator is the square root of \(n \), so we see that as \(n \) becomes larger, the sampling standard deviation of \(\bar{y} \) gets smaller. Here, recalling that \(SXX = \sum (x_i - \bar{x})^2 \), we reason that:

- If the \(x_i \)'s are far from \(\bar{x} \), \(SXX \) is _______, so s.d. (\(\hat{\eta} \)) is ________.
- If the \(x_i \)'s are close to \(\bar{x} \), \(SXX \) is _______, so s.d. (\(\hat{\eta} \)) is ________.

Thus if you are designing an experiment, choosing the \(x_i \)'s to be ________ from their mean will result in a more precise estimate of \(\hat{\eta} \). (Assuming the linear model fits!)

Expected value and variance of \(\hat{\eta}_0 \):

Using the formula \(\hat{\eta}_0 = \sum_{i=1}^{n} \left(\frac{1}{n} - c_i \bar{x}\right)y_i \), calculations (left to the interested student) similar to those for \(\hat{\eta} \) will show:

- \(E(\hat{\eta}_0) = \eta_0 \) \quad (So \(\hat{\eta}_0 \) is an unbiased estimator of \(\eta_0 \).)
- \(\text{Var}(\hat{\eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX}\right) \), so \(\text{s.d.}(\hat{\eta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{SXX}} \).
Analyzing the variance formula:
- The variance of $\hat{\eta}_h$ is ______________ than the variance of $\hat{\eta}_h$.
 → Does this agree with intuition?
- A larger sample size tends to give a __________ variance for $\hat{\eta}_h$.
 → Does this agree with intuition?
- A larger \bar{x} gives a __________ variance for $\hat{\eta}_h$.
 → Does this agree with intuition?
- The spread of the x_i's affects the variance of $\hat{\eta}_h$ in the same way it affects the variance of $\hat{\eta}_h$.

Covariance of $\hat{\eta}_h$ and $\hat{\eta}_h$: Similar calculations (left to the interested student) will show

\[
\text{Cov}(\hat{\eta}_h, \hat{\eta}_h) = -\sigma^2 \frac{\bar{x}}{SXX}
\]

Thus:
- $\hat{\eta}_h$ and $\hat{\eta}_h$ are not independent
 → Does this agree with intuition?
- The sign of Cov($\hat{\eta}_h, \hat{\eta}_h$) is opposite that of \bar{x}.
 → Does this agree with intuition?

Estimating σ^2: To use the variance formulas above for inference, we need to estimate σ^2 (= Var($Y|x_i$), the same for all i).

First, some plausible reasoning: If we had lots of observations $y_{i1}, y_{i2}, ..., y_{im}$ from $Y|x_i$, then we could use the univariate standard deviation

\[
\frac{1}{m-1} \sum_{j=1}^{m} (y_{ij} - \bar{y}_i)^2
\]

d of these m observations to estimate σ^2. (Here \bar{y}_i is the mean of $y_{i1}, y_{i2}, ..., y_{im}$, which would be our best estimate of $E(Y|x_i)$ just using $y_{i1}, y_{i2}, ..., y_{im}$)

We don't typically have lots of y's from one x_i, so we might try (reasoning that $\hat{E}(Y|x_i)$ is our best estimate of $E(Y|x_i)$)

\[
\frac{1}{n-1} \sum_{i=1}^{n} [y_i - \hat{E}(Y|x_i)]^2
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} e_i^2
\]

\[
= \frac{1}{n-1} \text{RSS}.
\]
However (just as in the univariate case, we need a denominator n-1 to get an unbiased estimator), a lengthy calculation (omitted) will show that

\[E(\text{RSS} | x_1, \ldots, x_n) = (n-2) \sigma^2 \]

(where the expected value is over all samples of the y_i's with the x_i's fixed)

Thus we use the estimate

\[\hat{\sigma}^2 = \frac{1}{n-2} RSS \]

to get an unbiased estimator for \(\sigma^2 \):

\[E(\hat{\sigma}^2 | x_1, \ldots, x_n) = \sigma^2. \]

[If you like to think heuristically in terms of losing one degree of freedom for each calculation from data involved in the estimator, this makes sense: Both \(\hat{\eta}_b \) and \(\hat{\eta}_c \) need to be calculated from the data to get RSS.]

Standard Errors for \(\hat{\eta}_b \) and \(\hat{\eta}_c \): Using

\[\hat{\sigma} = \sqrt{\frac{RSS}{n-2}} \]

as an estimate of \(\sigma \) in the formulas for s.d (\(\hat{\eta}_b \)) and s.d(\(\hat{\eta}_c \)), we obtain the *standard errors*

\[\text{s.e.} (\hat{\eta}_b) = \frac{\hat{\sigma}}{\sqrt{SXX}} \]

and

\[\text{s.e.} (\hat{\eta}_c) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{x^2}{SXX}} \]

as estimates of s.d (\(\hat{\eta}_b \)) and s.d (\(\hat{\eta}_c \)), respectively.