USING THE “FIND NORMALIZING TRANSFORMATIONS” FEATURE
(Corresponds to Section 13.2 in textbook)

Considerations to take into account:

1. The values found by the software are just estimates – so it is silly to try to get too precise.

 Example: The software suggests exponent 0.504 for TeachTax – this is silly as an exponent, but it suggests trying exponent 0.5.
 In other words: Do not stop with the values the software spits out; use them as starting points in your decisions.

2. One important consideration: What exponents make sense in context?

 Examples:
 - Exponent 1 is the easiest to interpret.
 - Exponent 0 also can be interpreted (multiplicative rather than additive scale)
 - Exponent 3 makes good sense when response is volume; 2 when response is area.
 - Exponent \(\frac{1}{2} \) might make sense when the variable is an area; \(\frac{1}{3} \) might make sense when the variable is a volume.
 - Other exponents might make sense in particular contexts.
 - Integers or fractions of integers make more sense than other numbers.

3. Excessive detail can also lead to overfitting – remember, you just have a sample, not the population. Parsimony is always one (not the only) consideration in model building.

4. Check out possible alternatives with a Likelihood Ratio Test (LRT). (Example later.)

5. Model selection methods are fairly robust as long as predictors are linearly related – so look at the scatterplot matrix when p-values from tests are marginal.

Exercise: Find suitable transformations for the Big Mac data (using Big Mac, Bread, BusFare, TeachSal, and TeachTax) after seeing the example done in class.