PREDICTION INTERVALS

What if we want to estimate \(Y|x \) not just \(E(Y|x) \)?

The only estimator available is

\[
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
\]

the same estimator we used for \(E(Y|x) \), calling it \(\hat{E}(Y|x) \).

Intuitively, we should not be able to estimate \(Y \) as closely as \(E(Y|x) \): Estimating \(E(Y|x) \) involves sampling error only, but estimating \(Y|x \) must take into account the natural variability of the distribution \(Y|x \) as well as sampling error.

[Try drawing a picture to illustrate this.]

The increased variability in estimating \(Y \) as compared to estimating \(E(Y|x) \) requires us to use a different standard error.

To help avoid confusion, estimating \(Y \) is called prediction. (Unfortunately, this produces possible new confusion: sometimes people think that regression prediction must involve the future, or that it is exact.) Similarly, the estimate is sometimes called \(y_{\text{pred}} \) rather than \(\hat{y} \) (so \(y_{\text{pred}} = \hat{\beta}_0 + \hat{\beta}_1 x \)), and the associated error is called prediction error:

Prediction error: For a new (or additional) observation \(y \) chosen from \(Y|x \) independently of \(y_1, \ldots, y_n \), we define

\[
\text{Prediction error} = y - \hat{E}(Y|x) = y - \hat{y}
\]

- Draw a picture
- Compare and contrast with the error \(e|x \) and the residuals \(\hat{\epsilon}_i \)
- Prediction error is a random variable -- its value depends on the choice of \(y_1, \ldots, y_n \), and \(y \)

For fixed \(x \),

\[
E(\text{prediction error}) = E(Y|x - \hat{E}(Y|x)) = \text{______________________________}
\]

Also,

\[
\text{Var(\text{prediction error})} = \text{Var}(Y|x - \hat{E}(Y|x)| x_1, \ldots, x_n)
\]

\[
= \text{Var}(Y|x, x_1, \ldots, x_n) + \text{Var}(\hat{E}(Y|x)| x_1, \ldots, x_n)) \quad \text{(Why?)}
\]

\[
= \text{Var}(Y|x) + \text{Var}(\hat{E}(Y|x)| x_1, \ldots, x_n))
\]

\[
= \sigma^2 + \text{Var}(\hat{E}(Y|x)) \quad \text{for short}
\]

\[
= \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)
\]

\[
= \sigma^2 \left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX} \right)
\]
Define: \(se(y_{\text{pred}|x}) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}} \)

\[= \sqrt{\hat{\sigma}^2 + \text{Var}(\hat{E}(Y|x))} \]

Sampling Distribution of Prediction Error:
- \(\hat{E}(Y|x) \) is a linear combination of the \(y_i \)'s \(\Rightarrow \) \(y|x - \hat{E}(Y|x) \) is a linear combination of \(y \) and the \(y_i \)'s.
- This plus independence and normality assumptions on \(y|x \) and the \(y_i \)'s \(\Rightarrow \) \(y|x - \hat{E}(Y|x) \) is normally distributed.
- It can be shown that this implies that
 \[
 \frac{Y|x - \hat{E}(Y|x)}{se(y_{\text{pred}|x})} \sim t(n-2).
 \]

Thus we can use this statistic to calculate a *prediction interval* (or "confidence interval for prediction") for \(y \).

Recall: A 90% *confidence* interval for the conditional mean \(E(Y|x) \) is an interval produced by a process which, for 90% of all independent random samples \(y_1, \ldots, y_n \) taken from \(Y|x_1, \ldots, Y|x_n \), respectively, yields an interval containing the parameter \(E(Y|x) \) (assuming all model assumptions fit).

Compare and contrast: A 90% *prediction* interval (or "confidence interval for prediction") is an interval produced by a process which, for 90% of all independent random samples \(y_1, \ldots, y_n \), \(y \) taken from \(Y|x_1, \ldots, Y|x_n, Y|x \), respectively, yields an interval containing the "new" sampled value \(y \) (assuming all the model assumptions fit).

Thus the prediction interval is not a confidence interval in the usual sense -- since it is used to estimate a value of a random variable rather than a parameter.