REGRESSION MODELS

One approach: Use theoretical considerations specific to the situation to develop a specific model for the mean function or other aspects of the conditional distribution.

The next two approaches (which have broader applicability) make model assumptions about joint or conditional distributions. They require some terminology:

Error: \[\text{el}_x = Y|x - \text{E}(Y|X = x) \]

- So \(Y|x = \text{E}(Y|x) + \text{el}_x \) (Picture this …)
- \(\text{el}_x \) is a random variable
- \(\text{E}(\text{el}_x) = \text{E}(Y|x) - \text{E}(Y|x)) = \text{E}(Y|X = x) - \text{E}(Y|X = x) = 0 \)
- \(\text{Var}(\text{el}_x) = \)
- The distribution of \(\text{el}_x \) is

Second approach:

Bivariate Normal Model: Suppose \(X \) and \(Y \) have a bivariate normal distribution. (Of course, we need to have evidence that this model assumption is reasonable or approximately true before we are justified in using this model.)

Recall: This implies
- \(Y|x \) is normal
- \(\text{E}(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X) \) (linear mean function)
- \(\text{Var}(Y|x) = \sigma_Y^2 (1 - \rho^2) \) (constant variance)

Thus:
- \(\text{E}(Y|x) = \alpha + \beta x \)
- \(\text{Var}(Y|x) = \sigma^2 \)

where
- \(\beta = \)
- \(\alpha = \)
- \(\sigma^2 = \)

Implications for \(\text{el}_x \):
- \(\text{el}_x \sim \)
Third approach: Model the conditional distributions

"The" Simple Linear Regression Model

Version 1:

Only one assumption: \(E(Y|x) \) is a linear function of \(x \).

Typical notation: \(E(Y|x) = \eta_0 + \eta_1 x \) (or \(E(Y|x) = \beta_0 + \beta_1 x \))

Equivalent formulation: \(Y|x = \eta_0 + \eta_1 x + e|x \)

Interpretations of parameters: (Picture!)

\(\eta_1 \): \(\eta_0 \): (if ...)

Some cases where this model fits:
- \(X, Y \) bivariate normal
- Other situations
 - Example: Blood lactic acid
 - Why is this not bivariate normal?
- Model might also be used when mean function is not linear, but linear approximation is reasonable.

Note: In this model, \(Y \) is a random variable, but \(X \) need not be.

Version 2: Two assumptions:

1. \(E(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)
2. \(\text{Var}(Y|x) = \sigma^2 \) (constant variance)

Equivalent formulation:

1’. \(E(Y|x) = \eta_0 + \eta_1 x \) (linear mean function)
2’. \(\text{Var}(e|x) = \sigma^2 \) (constant error variance)

[DRAW A PICTURE!]

Situations where the model fits:

- If \(X \) and \(Y \) have a bivariate normal distribution.
- Credible (at least approximately) in many other situations as well, for transformed variables if not for the original variables. (i.e., it's often useful)
Until/unless otherwise stated, we will henceforth assume the Version 2 model -- i.e., we will assume conditions (1) and (2) (equivalently, (1') and (2')).

Thus we have three parameters:
- η_0, η_1 (which determine $E(Y|x)$ and σ^2 (which determines $\text{Var}(Y|x)$)

The goal: To estimate η_0 and η_1 (and later σ^2) from data.

Notation: The estimates of η_0 and η_1 will be called $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively. From $\hat{\eta}_0$ and $\hat{\eta}_1$, we obtain an estimate

$$\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$$

of $E(Y|x)$.

Note: $\hat{E}(Y|x)$ is the same notation we used earlier for the lowess estimate of $E(Y|x)$. Be sure to keep the two estimates straight.

More terminology:
- We label our data (x_1, y_1), (x_2, y_2), ..., (x_n, y_n).
- $\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 x_i$ is our resulting estimate $\hat{E}(Y|x_i)$ of $E(Y|x_i)$. It is called the i^{th} fitted value or i^{th} fit.
- $\hat{e}_i = y_i - \hat{y}_i$ is called the i^{th} residual.

Note: \hat{e}_i (the residual) is analogous to but not the same as $e|x_i$ (the error). Indeed, \hat{e}_i can be considered an estimate of the error $e_i = y_i - E(Y|x_i)$.

Draw a picture:
Least Squares Regression: *A method of obtaining estimates \(\hat{\eta}_0 \) and \(\hat{\eta}_1 \) for \(\eta_0 \) and \(\eta_1 \)*

Consider lines \(y = h_0 + h_1 x \). We want the one that is "closest" to the data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) collectively.

What does "closest" mean?

Various possibilities:

1. The usual math meaning: shortest perpendicular distance to point.
 Problems:
 - Gets unwieldy quickly.
 - We're really interested in getting close to \(y \) for a given \(x \) -- which suggests:

2. Minimize \(\sum d_i \), where \(d_i = y_i - (h_0 + h_1 x_i) = \) vertical distance from point to candidate line. (Note: If the candidate line is the desired best fit then \(d_i = 0 \).
 Problem: Some \(d_i \)'s will be positive, some negative, so will cancel out in the sum. This suggests:

3. Minimize \(\sum |d_i| \). (“Minimum Absolute Deviation,” or MAD) This is feasible with modern computers, and is sometimes done.
 Problems:
 - This can be computationally difficult and lengthy.
 - The solution might not be unique.
 Example:
 - The method does not lend itself as readily to inference for the estimates.

4. Minimize \(\sum d_i^2 \)
 This works well!
 See demo.

Terminology:
- \(\sum d_i^2 \) is called the *residual sum of squares* (denoted \(\text{RSS}(h_0, h_1) \)) or the *objective function*.
- The values of \(h_0 \) and \(h_1 \) that minimize \(\text{RSS}(h_0, h_1) \) are denoted \(\hat{h}_0 \) and \(\hat{h}_1 \), respectively, and called the *ordinary least squares* (or *OLS*) estimates of \(\eta_0 \) and \(\eta_1 \).