INTRODUCTION TO SMOOTHING

One aspect of regression is to see how the "center" of the conditional distributions varies as a function of the explanatory variable -- e.g., to express \(E(Y|X = x) \) as a function of \(x \).

A smooth is a curve constructed (by a computer algorithm) to go through or close to all points \((x, E(Y|X = x))\) (a "mean smooth") or through or close to all points \((x, \text{med}(Y|X = x))\) (a "median smooth").

Example: In the fish data, we have seen both a median smooth (transparency) and a lowess mean smooth (constructed by arc).

Note: The median smooth was easy to construct for the fish data, since there were just a few values of the explanatory variable.

Example: Try this with the haystack data -- we need to choose the number of "slices," introducing the idea of a smoothing parameter.

Note: 1. What does the haystack smooth help us see in the data? 2. Arc also has a "slice smooth" function illustrating how a parameter in involved in creating a smooth.

The lowess (locally weighted scatterplot smoother) smooth can be found on most statistical software.

Outline of how the lowess curve is calculated

- Start with data points \((x_1, y_1), \ldots, (x_n, y_n)\).
- Select a smoothing parameter \(f\) between 0 and 1. (We'll use \(f = 0.5\) for illustration.)
- For each \(i\),
 a. Look at the half (if \(f = \frac{1}{2}\); 1/4 if \(f = \frac{1}{4}\), etc.) of the data with \(x\) values closest to \(x_i\).
 b. Fit a line (using weighted least squares -- we may talk about this later) to these points in a way that gives more weight to points with \(x\) closest to \(x_i\).
 c. Replace \(y_i\) with \(y_i' = \) the \(y\)-value of the point on this line corresponding to \(x_i\). (So \(y_i'\) "adjusts" \(y_i\) to be influenced by nearby data points.)
- After doing this separately for each \(i\), repeat the procedure using points \((x, y_i')\) (so the effect of points away from the trend will probably be less.)
- After a few iterations of this process, connect all the current "adjusted" points.