WEIGHTED LEAST SQUARES

Model assumptions:
1. \(E(Y|X_i) = \eta^T u_i \) (linear mean function -- as for ordinary least squares)
2. \(\text{Var}(Y|X_i) = \sigma^2/w_i \), where the \(w_i \)'s are known, positive constants (called weights) (Different from OLS!)

Observe:
- \(w_i \) is inversely proportional to \(\text{Var}(Y|X_i) \). This is sometimes helpful in getting suitable \(w_i \)'s.
- the \(w_i \)'s aren't unique – we could multiply all of them by a constant \(c \), and divide \(\sigma \) by \(\sqrt{c} \) to get an equivalent model.

Error: For WLS, the error is defined as
\[
e_i = \sqrt{w_i} \left[Y|X_i - \eta^T u_i \right]
\]
(Different from OLS!)

Then (exercise)
\[
E(e_i) = 0 \text{ and } \text{Var}(e_i) = \sigma^2
\]

Reformulating (1) in terms of errors:
1': \(Y|X_i = \eta^T u_i + e_i/\sqrt{w_i} \)

Note: WLS is not a universal remedy for non-constant variance, since weights are needed. But it is useful in many types of situations, e.g.,

A. If \(Y|X_i \) is the sum of \(m_i \) independent observations, each with variance \(\sigma^2 \), then
\[
\text{Var}(Y|X_i) = \text{_______}, \text{ so we could take } w_i = \text{_______}.
\]

B. If \(Y|X_i \) is the average of \(m_i \) independent observations, each with variance \(\sigma^2 \), then
\[
\text{Var}(Y|X_i) = \text{_______}, \text{ so we could take } w_i = \text{_______}.
\]

C. Sometimes visual or other evidence suggests a pattern of how \(\text{Var}(Y|X_i) \) depends on \(x_i \). For example, if it looks like \(\sqrt{\text{Var}(Y|X_i)} \) is a linear function of \(x_i \) [Sketch a picture of this!], then we can fit a line to the data points \((x_i, s_i)\), where \(s_i = \) sample standard deviation of observations with \(x \) value \(x_i \). If we get
\[
\hat{s}_i = \hat{\gamma}_0 + \hat{\gamma}_1 x_i, \text{ try } w_i = \text{_______}.
\]

D. Sometimes theoretical considerations may suggest a choice of weights. (e.g., theoretical considerations might suggest that the conditional distributions are Poisson, which implies that their variances are equal to their means. This would suggest taking \(w_i = \text{_______} \).)

E. Weighted least squares is also useful for other purposes – e.g., in calculating the lowess estimate, lines are fit so that points at the ends of the range count less than points at the middle of the range.
Fitting WLS: A WLS model may be fit by least squares: Find \(\hat{h} \) to minimize the “weighted residual sum of squares”

\[
\text{RSS}(h) = \sum w_i (y_i - h^T u_i)^2
\]

\(\hat{h} \) is called the “WLS estimate” of the coefficients.

Comments:

a. If all \(w_i = 1 \), we get ________________.

b. The larger \(w_i \) is, the more the \(i \)th observation “counts” (and the __________er the variance at \(x_i \) – think of the geese example.)

c. RSS(\(h \)) = \(\sum [\sqrt{w_i} y_i - h^T (\sqrt{w_i} u_i)]^2 \), so we could get \(\hat{h} \) by using OLS to regress the \(\sqrt{w_i} y_i \)'s on the \(\sqrt{w_i} u_i \)'s, but, we would need to fit **without** an intercept, since the first component of \(\sqrt{w_i} u_i \) is not 1. However, most statistics software has a routine to fit WLS directly – it will ask for weights; typically you need to have stored them as a “variable” or column.

Example: Coin data.

Residuals in WLS: Recall that the errors in WLS are \(e_i = \sqrt{w_i} [Y|X_i - \eta^T u_i] \).

Analogously, the residuals are defined as \(\hat{e}_i = \sqrt{w_i} (y_i - \hat{y}_i) \)

Caution: Some software provides only the **unweighted** residuals \(y_i - \hat{y}_i \); you need to multiply by the factors \(\sqrt{w_i} \) in order to make residual plots (to be discussed shortly).

RSS and variance estimate:

\[
\text{RSS} = \sum w_i (y_i - \hat{y}_i)^2 = \sum \hat{e}_i^2
\]

\[
\hat{\sigma}^2 = \frac{\text{RSS}}{(n-k)}
\]

Example: With the coins data, does \(\hat{\sigma}^2 \) seem reasonable?

Inference for WLS: Proceeds similarly to inference for ordinary least squares -- Model assumptions for inference are (1) and (2) above, plus

3) Independence of observations, and

4) Normal conditional distributions.

Cautions in WLS inference:

- Estimating variances to get weights (as in coins example) introduces more uncertainty.
- The interpretation of \(R^2 \) is questionable – some software doesn’t even give it.
- Inference for means and prediction requires a weight (see pp. 209 – 210 for details)
- Is prediction appropriate for the coins example?