NOTATION FOR MULTIPLE LINEAR REGRESSION

Response variable: Y (or y)

Predictor variables: X₁, X₂, … , Xₚ.

Note:
1. This is a change in notation: the subscript on the X’s now denotes a different variable, not a different observation.

2. p = number of predictor variables

So we would use x₁, x₂, … , xₚ to denote the values of X₁, X₂, … , Xₚ at one observation (i.e., for one case).

For short:

\[
X \quad \text{(or } X \text{ if handwritten)} = \begin{bmatrix} x₁ \\ x₂ \\ \vdots \\ xₚ \end{bmatrix} (or \begin{bmatrix} X₁ \\ X₂ \\ \vdots \\ Xₚ \end{bmatrix})
\]

(to refer to the random variables)

\[
x \quad \text{(or } \bar{x} \text{)} = \begin{bmatrix} x₁ \\ x₂ \\ \vdots \\ xₚ \end{bmatrix} (or \begin{bmatrix} x₁ \\ x₂ \\ \vdots \\ xₚ \end{bmatrix})
\]

(to refer to specific values of the r.v.'s)

Example:

E(Y|X) (or E(Y|\bar{x})) is short for

\[E(Y | x₁, x₂, \ldots, xₚ) \]

\[= E(Y | X₁ = x₁, X₂ = x₂, \ldots, Xₚ = xₚ) \]
To label data:

First observation: \(x_{11}, x_{12}, \ldots, x_{1p}, y_1 \)

Second observation: \(x_{21}, x_{22}, \ldots, x_{2p}, y_2 \)

\[\vdots \]

\(n \)th observation: \(x_{n1}, x_{n2}, \ldots, x_{np}, y_n \)

Thus:

- \(n \) still = number of observations
- Subscript on \(y \) has same meaning as before (observation number)
- First subscript on \(x \) = observation number
- Second subscript on \(x \) = variable number
- i.e., \(x_{ij} \) = value of the \(j \)th predictor at the \(i \)th observation.

For short:

\[
\begin{bmatrix}
 x_{i1} \\
 x_{i2} \\
 \vdots \\
 x_{ip} \\
\end{bmatrix}
\]

\(\text{(or } \begin{bmatrix}
 x_{1} \\
 x_{2} \\
 \vdots \\
 x_{n} \\
\end{bmatrix} \text{)} \) -- the vector of
values of the predictor variables at observation \(i \).

The general goal of multiple regression:

Study how \(Y \mid x \) changes as \(x \) changes.

Example: Bic Mac

\(Y \) = the cost of a Big Mac in various countries
\(X_i \)'s = various economic indicators.

We'll use Bread, TeachSal, TeachTax, BusFare

Thus \(p = _ \).