SUBMODELS (NESTED MODELS)
AND
ANALYSIS OF VARIANCE
OF REGRESSION MODELS

Data: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Assumptions:
- Linear mean function
- Constant conditional variance
- Independence of observations
- Normality of conditional distributions

Our model has 3 parameters:

\[
E(Y|x) = \eta_0 + \eta_1 x \quad \text{(Two parameters: } \eta_0 \text{ and } \eta_1) \\
\text{Var}(Y|x) = \sigma^2 \quad \text{(One parameter: } \sigma) \\
\]

We will call this the **full model**.

Many hypothesis tests on coefficients can be reformulated as test of the full model against a **submodel**: a special case of the full model obtained by specifying certain of the parameters or certain relationships between parameters.

Examples:

a. \(\text{NH: } \eta_1 = 1\)
 \(\text{AH: } \eta_1 \neq 1\)

What submodel does NH correspond to?

How many parameters does it have?

AH corresponds to the full model (with three parameters, including \(\eta_1\)).

b. \(\text{NH: } \eta_1 = 0\)
 \(\text{AH: } \eta_1 \neq 0\)

AH \(\leftrightarrow\) full model.

NH \(\leftrightarrow\) ?

Number of parameters?
c. NH: $\eta_0 = 0$
 AH: $\eta_0 \neq 0$

 AH \leftrightarrow full model.

 NH \leftrightarrow?

 Number of parameters?

 We can go the other way:

 Examples: For the submodel given, what is the null hypothesis of the corresponding hypothesis test?

d. $\mathbb{E}(Y|x) = 2 + \eta_1 x$
 $\text{Var}(Y|x) = \sigma^2$

 As with the full model, we can "fit" a submodel using least squares:

 Example 1: Submodel:

 $\mathbb{E}(Y|x) = 2 + \eta_1 x$

 $\text{Var}(Y|x) = \sigma^2$

 Consider lines $y = 2 + h_1 x$

 [picture!]

 Minimize

 $\text{RSS}(h_1) = \sum d_i^2 = \sum [y_i - (2 + h_1 x_i)]^2$

 to get \hat{h}_1.

 Note: For this example, $y_i - (2 + h_1 x_i) = (y_i - 2) - h_1 x_i$, so fitting this model is equivalent to fitting the model

 $\mathbb{E}(Y|x) = \eta_1 x$

 $\text{Var}(Y|x) = \sigma^2$

 to the transformed data

 $$(x_1, y_1 - 2), (x_2, y_2 - 2), \ldots, (x_n, y_n - 2)$$
Example 2: Submodel

\[E(Y|x) = \eta_0 \]
\[\text{Var}(Y|x) = \sigma^2 \]

Minimize
\[\text{RSS}(h_0) = \sum d_i^2 = \sum (y_i - h_0)^2 \]

[picture!]

Details:

Result: \(h_0 = \bar{y} \) -- the same as the univariate estimate.

Note: This is also the same as setting \(\hat{\eta}_1 = 0 \) in the least squares fit for the full model.

Caution: The result is not always this nice, as the exercise below shows.

Exercise: Try finding the least squares fit for the submodel

\[E(Y|x) = \eta_1 x \]
\[\text{Var}(Y|x) = \sigma^2 \]

("Regression through the origin")

You should get a different formula for \(\hat{\eta}_1 \) from that obtained by setting \(\hat{\eta}_0 = 0 \) in the formula for the least squares fit for the full model.
Generalizing: If we fit a submodel by Least Squares, we can define the residual sum of squares for the submodel:

$$\text{RSS}_{\text{sub}} = \sum (y_i - \hat{y}_{i,\text{sub}})^2 = \sum \hat{e}_{i,\text{sub}}^2$$

where

$$\hat{y}_{i,\text{sub}} = \hat{E}_{\text{sub}}(Y|x)$$

is the fitted value for the submodel and

$$\hat{e}_{i,\text{sub}} = y_i - \hat{y}_{i,\text{sub}}$$

Example: For the submodel

$$E(Y|x) = \eta_0$$
$$\text{Var}(Y|x) = \sigma^2,$$

$$\hat{y}_{i,\text{sub}} = \bar{Y}$$ for each i, so

$$\text{RSS}_{\text{sub}} = \sum (y_i - \bar{Y})^2 = SYY = (n-1) s_Y.$$

where s_Y is the sample standard deviation of Y.

General Properties: (Stated without proof; true for multiple regression as well as simple regression)

i. RSS_{sub} is a multiple of a χ^2 distribution, with

ii. degrees of freedom $\text{df}_{\text{sub}} = n - (# \text{ of coefficients estimated})$, and

iii. $\hat{\sigma}_{\text{sub}}^2 = \frac{\text{RSS}_{\text{sub}}}{\text{df}_{\text{sub}}}$ is an estimate of σ^2 for the submodel.

This will allow us to do hypothesis tests comparing a submodel with the full model.
Another Perspective:

We want a way to help decide whether the full model is significantly better than the full model.

\[\text{RSS}_\text{sub} - \text{RSS}_\text{full} \] can be considered a measure of how much better the full model is than the submodel.

(Why is this difference always \(\geq 0 \)?)

But \(\text{RSS}_\text{sub} - \text{RSS}_\text{full} \) depends on the scale of the data,

\[\frac{\text{RSS}_\text{sub} - \text{RSS}_\text{full}}{\text{RSS}_\text{full}} \]

so \(\frac{\text{RSS}_\text{sub} - \text{RSS}_\text{full}}{\text{RSS}_\text{full}} \) is a better measure.

Example (to help build intuition): The submodel

\[\begin{align*}
E(Y|x) &= \eta_0 \\
\text{Var}(Y|x) &= \sigma^2
\end{align*} \]

Testing this model against the full model is equivalent to performing a hypothesis test with

NH: \(\eta_1 = 0 \)
AH: \(\eta_1 \neq 0 \).

This hypothesis test uses the t-statistic

\[t = \frac{\hat{\eta}_1}{\text{se}(\hat{\eta}_1)} = \frac{SXY}{\hat{\sigma} \sqrt{SXX}} \sim t(n-2), \]

where here \(\hat{\sigma} = \hat{\sigma}_\text{full} \) is the estimate of \(\sigma \) for the full model.

Note that

\[t^2 = \frac{(SXY)^2}{\hat{\sigma}^2} = \frac{(SXY)^2}{\hat{\sigma}^2 (SXX)} \]

Recall:

\[\text{RSS}_\text{full} = SYY - \frac{(SXY)^2}{SXX} \]

\[\text{RSS}_\text{sub} = SYY \] (in this particular example)

Thus

\[\text{RSS}_\text{sub} - \text{RSS}_\text{full} = \frac{(SXY)^2}{SXX} \]

so
\[t^2 = \frac{RSS_{sub} - RSS_{full}}{\hat{\sigma}^2} \]

\[= \frac{RSS_{sub} - RSS_{full}}{RSS_{full} / (n - 2)} \]

\[= \frac{RSS_{sub} - RSS_{full}}{RSS_{full}} + (n-2), \]

which is just a constant times our earlier measure

\[\frac{RSS_{sub} - RSS_{full}}{RSS_{full}} \] of how much better the full model is than the submodel.

F Distributions

Recall: A t(k) random variable has the distribution of a random variable of the form

\[t(k)^2 \sim \]

Thus

\[t(k)^2 \sim \]

Also,

\[Z^2 \sim \]

Definition: An F-distribution \(F(\nu_1, \nu_2) \) with \(\nu_1 \) degrees of freedom in the numerator and \(\nu_2 \) degrees of freedom in the denominator is the distribution of a random variable of the form

\[\frac{W/\nu_1}{U/\nu_2} \]

where \(W \sim \chi^2(\nu_1) \)

\[U \sim \chi^2(\nu_2) \]

and U and W are independent.
Thus:
\[t(k)^2 \sim F(1, k); \]
i.e., the square of a t(k) random variable is an F(1,k) random variable – so any two-sided t-test could also be formulated as an F-test.

In particular, the hypothesis test with hypotheses

\begin{align*}
\text{NH: } & \eta_1 = 0 \\
\text{AH: } & \eta_1 \neq 0
\end{align*}

could be done using the F-statistic \(t^2 \) instead of the t-statistic .

Recall that in this example,
\[t^2 = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}} + (n-2), \]
which we have seen does make sense as a measure of whether the full model (corresponding to AH) is better than the submodel (corresponding to NH).

\textbf{Example: } Forbex data.

\textbf{Still another look at the F-statistic } \(t^2 \):
\[
F = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}/(n-2)} = \frac{(RSS_{sub} - RSS_{full})(df_{sub} - df_{full})}{RSS_{full}/df_{full}},
\]

since \(df_{sub} - df_{full} = (n-1) - (n-2) = 1. \)

i.e., \(F \) is the ratio of:

\textbf{Numerator:}
the difference between the residual sum of squares for the submodel and the RSS for the full model

\textbf{Denominator:}
the residual sum of squares for the full model

\textbf{But:}
with each divided by its degrees of freedom to "weight" them appropriately to get a tractable distribution.
This is also just a constant times \(\frac{RSS_{\text{sub}} - RSS_{\text{full}}}{RSS_{\text{full}}} \),

which is a reasonable measure of how much better the full model is than the submodel in fitting the data.

This generalizes: Whenever we have a submodel (in multiple linear regression as well as simple linear regression),

a. RSS_{\text{sub}} (hence \(\hat{\sigma}^2_{\text{sub}} \)) will be a constant times a \(\chi^2 \) distribution, with degrees of freedom df_{\text{sub}}, which we then also refer to as the degrees of freedom of RSS_{\text{sub}} and of \(\hat{\sigma}^2_{\text{sub}} \).

\[
\frac{(RSS_{\text{sub}} - RSS_{\text{full}})}{RSS_{\text{full}} / df_{\text{full}}} = \left(\frac{RSS_{\text{sub}} - RSS_{\text{full}}}{RSS_{\text{full}} / df_{\text{full}}} \right)
\]

\[
= \frac{(RSS_{\text{sub}} - RSS_{\text{full}})}{RSS_{\text{full}} / df_{\text{full}}}
\]

\[
\sim F(df_{\text{sub}}, df_{\text{full}}, df_{\text{full}}).
\]

Rewriting the F-statistic,

\[
\frac{(RSS_{\text{sub}} - RSS_{\text{full}})}{RSS_{\text{full}} / df_{\text{full}}} = \left(\frac{RSS_{\text{sub}} - RSS_{\text{full}}}{RSS_{\text{full}} / df_{\text{full}}} \right)
\]

is just a constant multiple of \(\frac{RSS_{\text{sub}} - RSS_{\text{full}}}{RSS_{\text{full}}} \), which

is a reasonable measure of how much better the full model is than the submodel in fitting the data.

Thus we can use this F statistic for the hypothesis test

\[
\text{NH: Submodel}
\]

\[
\text{AH: Full model}
\]