<table>
<thead>
<tr>
<th>Associated Random Variable</th>
<th>Population</th>
<th>One Simple Random Sample y_1, y_2, \ldots, y_n of size n</th>
<th>All Simple Random Samples of size n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
<td>\bar{Y}_n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The population for \bar{Y}_n is all simple random samples of size n from Y. The value of \bar{Y}_n for a particular simple random sample is the sample mean \bar{y} for that sample.</td>
<td></td>
</tr>
<tr>
<td>Associated Distribution</td>
<td>Y has a normal distribution.</td>
<td>The sample is from the (normal) distribution of Y.</td>
<td>The distribution of \bar{Y}_n is called the Sampling Distribution. The theorem tells us that the sampling distribution is normal.</td>
</tr>
<tr>
<td>Associated Mean(s)</td>
<td>Population mean μ, also called $E(Y)$, or the expected value of Y, or the expectation of Y</td>
<td>Sample mean $\bar{y} = (y_1 + y_2 + \ldots + y_n)/n$ It’s an estimate of μ.</td>
<td>Since it’s a random variable, \bar{Y}_n also has a mean, $E(\bar{Y}_n) = \mu$. (In other words, the random variables Y and \bar{Y}_n have the same mean – i.e., $E(\bar{Y}_n) = E(Y) = \mu$.)</td>
</tr>
<tr>
<td>Associated Standard Deviation</td>
<td>Population standard deviation σ</td>
<td>Sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^2}$ s is an estimate of the population standard deviation σ</td>
<td>Sampling distribution standard deviation. The theorem tells us that the standard deviation of the sampling standard deviation is σ/\sqrt{n}.</td>
</tr>
</tbody>
</table>