SELECTING TERMS (Supplement to Section 11.5)

Transforming toward multivariate normality helped deal with the problem that deleting terms from the full model might result in a non-linear mean term or non-constant variance.

Another possible problem: Dropping terms might introduce bias.

First observe: When we drop terms and refit using least squares, the coefficient estimates may change. *Example*: The highway data.

Explanatory Example: Suppose the correct model has mean function $E(Y|\mathbf{x}) = \eta_0 + \eta_1 u_1 + \eta_2 u_2$. Then

 $Y = \eta_0 + \eta_1 u_1 + \eta_2 u_2 + \epsilon.$ (So ϵ is a random variable with $E(\epsilon) = 0.$) Suppose further that

 $u_2 = 2u_1 + \delta$, where δ is a random variable with $E(\delta) = 0$.

Then

$$\begin{split} Y &= \eta_0 + \eta_1 u_1 + \eta_2 (2 u_1 + \delta) + \epsilon \\ &= \eta_0 + (\eta_1 + 2 \eta_2) u_1 + (\eta_2 \delta + \epsilon) \\ &= \eta_0' + \eta_1' u_1 + \epsilon' \end{split}$$

where $\eta_0 = \eta_0$, $\eta_1 = \eta_1 + 2\eta_2$, and $\varepsilon = \eta_2 \delta + \varepsilon$. Since

 $E(\varepsilon') = E(\eta_2 \delta + \varepsilon) = \eta_2 E(\delta) + E(\varepsilon) = 0,$

the mean function for the submodel is

 $E(Y|\mathbf{x}) = \eta_0' + \eta_1' u_1.$

Now suppose we fit both models by least squares, giving fits \hat{y}_i for the full model and \hat{y}_{isub} for the submodel. Recalling that 1) the least squares estimates are unbiased *for the model used*, 2) u_{i1} denotes the value of term u_1 at observation i, etc., and 3)we are fixing the x-values, and hence the u-values, of the observations, we have that the expected values of the sampling distributions of \hat{y}_i and \hat{y}_{isub} are:

 $E(\hat{y}_i) = \eta_0 + \eta_1 u_{i1} + \eta_2 u_{i2} = \eta_0 + \eta_1 u_{i1} + \eta_2 (2u_{i1} + \delta_i)$ where δ_i is the value of δ for observation i, and

 $E(\hat{y}_{isub}) = \eta_0' + \eta_1' u_{i1} = \eta_0 + (\eta_1 + 2\eta_2) u_{i1}.$

Note that $E(\hat{y}_i)$ has the additional term $\eta_2 \delta_i$ that $E(\hat{y}_{isub})$ doesn't have. Thus, if the full model is the true model, then \hat{y}_{isub} is a *biased* estimator of $E(Y|\mathbf{x}_i)$

Definition: The *bias* of an estimator is the difference between the expected value of the estimator and the parameter being estimated. So for parameter $E(Y | x_i)$ and estimator \hat{y}_{isub} ,

bias
$$(\hat{y}_{isub}) = E(\hat{y}_{isub}) - E(Y \mid \mathbf{x}_{i})$$

A counterbalancing consideration: Dropping terms might also reduce the variance of the coefficient estimators -- which is desirable! To see this, we use a formula (see Section 10.1.5) for the sampling variance of the coefficient estimators: The variance of the coefficient estimator $\hat{\eta}_i$ in a model is

$$\operatorname{Var}(\hat{\boldsymbol{\eta}}_{j}) = \frac{\sigma^{2}}{SU_{j}U_{j}} \frac{1}{1 - R_{j}^{2}},$$

where SU_jU_j is defined like SXX, and R_j^2 is the coefficient of multiple determination for the regression of u_j on the other terms in the model. Notice that the first factor is independent of the other terms. Adding a term usually increases R_j^2 ; deleting one usually decreases R_j^2 . Thus adding a term usually increases $Var(\hat{\eta}_j)$; deleting a term usually decreases $Var(\hat{\eta}_j)$ (i.e., gives a more precise estimate of η_j). Since \hat{y}_i is a linear combination of the $\hat{\eta}_i$'s, the effect will be the same for $Var(\hat{y}_i)$.

Summarizing: Dropping terms might introduce bias (bad) but might reduce variance (good). Sometimes, having biased estimates is the lesser of two evils. The following picture illustrates this: One estimator has distribution N(0, 1) and is unbiased; the other has distribution N(0.5, 0.1) and is hence biased but has smaller variance:

One way to address this problem is to evaluate the model by a measure that includes both bias and variance. This is the *mean squared error*: The expected value of the square of the error between the fitted value (for the submodel) and the true conditional mean at \mathbf{x}_i :

$$MSE(\hat{y}_i) = E([\hat{y}_i - E(Y \mid \mathbf{x}_i)]^2)$$

Note:

- 1. MSE (\hat{y}_i) is defined like the sampling variance of \hat{y}_i .
- 2. Thus, if \hat{y}_i is an unbiased estimator of $E(Y | \mathbf{x}_i)$, then MSE $(\hat{y}_i) =$
- 3. Do not confuse with another use of MSE -- to denote RSS/df = Mean Square for Residuals (on regression ANOVA table)
- 4. MSE is *not* a statistic it involves the parameter $E(Y | \mathbf{x}_i)$.

We would like MSE (\hat{y}_i) to be small. To understand MSE better, we will examine, for fixed i, the variance of $\hat{y}_i - E(Y | \mathbf{x}_i)$:

$$\begin{aligned} \operatorname{Var}(\hat{y}_i - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_i)) \\ &= \operatorname{E}([\hat{y}_i - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_i)]^2) - [\operatorname{E}(\hat{y}_i - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_i))]^2 \\ &= \operatorname{MSE}(\hat{y}_i) - [\operatorname{E}(\hat{y}_i) - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_i)]^2 \\ &= \operatorname{MSE}(\hat{y}_i) - [\operatorname{bias}(\hat{y}_i)]^2. \end{aligned}$$

Also, since $E(Y | \mathbf{x}_i)$ is constant,

$$\operatorname{Var}(\hat{y}_i - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_i)) = \operatorname{Var}(\hat{y}_i).$$

Thus,

$$MSE(\hat{y}_i) = Var(\hat{y}_i) + [bias(\hat{y}_i)]^2.$$

So MSE really is a combined measure of variance and bias.

Summarizing: Deleting a term typically decreases $Var(\hat{y}_i)$ but increases bias. So we want to play these effects off against each other by minimizing MSE (\hat{y}_i) . But we need to do this minimization for *all* i's, so we consider the *total mean squared error*

$$J = \sum_{i=1}^{n} MSE(\hat{y}_{i})$$

= $\sum_{i=1}^{n} {Var(\hat{y}_{i}) + [bias(\hat{y}_{i})]^{2}}.$ (*)

We want this to be small. Since J involves the parameters $E(Y | x_i)$, we need to estimate it. It works better to estimate the *total normed mean squared error*

$$\gamma \text{ (or } \Gamma) = J/\sigma^2 \tag{**}$$

(where σ^2 is as usual the conditional variance of the *full* model). Remember that \hat{y}_i is the fitted value for the *submodel*, so γ depends on the submodel. To emphasize this, we will denote γ by γ_1 , where I is the set of terms retained in the submodel.

If the submodel is unbiased, then

$$\gamma_{\mathrm{I}} = (1/\sigma^2) \sum_{i=1}^{n} \operatorname{Var}(\hat{y}_i),$$

Now appropriate calculations show that

$$(1/\sigma^2)\sum_{i=1}^n \operatorname{Var}(\hat{y}_i) = k_{\mathrm{I}},$$
 (***)

the number of terms in I, whether or not the submodel is unbiased. (Try doing the calculation for $k_I = 2$ -- i.e., when the submodel is a simple linear regression model, using the formula for Var(\hat{y}_i) in that case.) This implies that an unbiased model has $\gamma_I = k_I$ Thus having γ_I close to k_I implies that the submodel has small bias.

Summarizing: A good submodel has γ_I

(i) small (to get small total error)(ii) near k_I (to get small bias).

Putting together (*), (**), and (***) gives

$$\gamma_{\rm I} = {\rm k}_{\rm I} + (1/\sigma^2) \sum_{i=1}^n [{\rm bias}\,(\,\hat{y}_i)]^2.$$

It turns out that $(n - k_I)(\hat{\sigma}_I^2 - \hat{\sigma}^2)$ (where $\hat{\sigma}_I^2$ is the estimated conditional variance for the submodel) is an appropriate estimator for $\sum_{i=1}^{n} [\text{bias}(\hat{y}_i)]^2$, so the statistic

$$C_{I} = k_{I} + \frac{(n - k_{I})(\hat{\sigma}_{I}^{2} - \hat{\sigma}^{2})}{\hat{\sigma}^{2}}$$

is an estimator of γ_I . C_I is called *Mallow's* C_I *statistic*. (It is sometimes called C_p , where $p = k_I$.) Some algebraic manipulation results in the alternate formulation

$$C_{I} = k_{I} + (n - k_{I})\frac{\hat{\sigma}_{I}^{2}}{\hat{\sigma}^{2}} - (n - k_{I})$$
$$= \frac{RSS_{I}}{\hat{\sigma}^{2}} + 2k_{I} - n.$$

Thus we can use Mallow's statistic to help identify good candidates for submodels by looking for submodels where C_1 is both

(i) small (suggesting small total error)

and

(ii) $\leq k_{I}$ (suggesting small bias)

Comments:

1. Mallow's statistic is provided by many software packages in some model-selection routine. Arc gives it in both Forward selection and Backward elimination. Other software

(e.g., Minitab) may use different procedures for Forward and Backward selection/elimination, but give Mallow's statistic in another routine (e.g., Best Subsets).

2. Since C_I is a statistic, it will have sampling variability. It might happen, in particular, that C_I is negative, which would suggest small bias. It also might happen that C_I is larger than k_I even when the model is unbiased, but there is no way to distinguish this situation from a case where there is bias but C_I happens to be less than γ_I .