M340L Fall 2010: Exam 1 Practice Problems

Problem 1. Consider the system of 3 linear equations in 3 variables:

$$
\begin{aligned}
5 x_{1}-3 x_{2}+8 x_{3} & =4 \\
x_{1}+x_{2} & =0 \\
6 x_{1}-2 x_{2}+8 x_{3} & =4
\end{aligned}
$$

a) Express this system as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$. What are A and \mathbf{b} ? How is \mathbf{x} related to the variables x_{1}, x_{2}, x_{3} ?
b) What is the solution set S_{1} of this system? Describe it in parametric form. (Recall that "parametric form" means giving a formula for the solutions such as $\mathbf{x}=t \mathbf{v}+\mathbf{p}$ where t is arbitrary, or $\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\mathbf{p}$ where t_{1} and t_{2} are arbitrary.)
c) What is the solution set S_{2} of the system $A \mathbf{x}=\mathbf{0}$? Describe it in parametric form.
d) Describe S_{1} and S_{2} geometrically as subsets of \mathbb{R}^{3} : is each one an empty set, a point, a line, a plane, or a three-dimensional space? How are they related geometrically to one another?

Problem 2. Consider the matrices

$$
A=\left[\begin{array}{cc}
1 & 3 \\
4 & -2 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
4 & 2 \\
3 & 0
\end{array}\right] .
$$

a) For each of the products $A B, B C$, and $A C$, either calculate the product or write "not defined" if it is not defined.
b) Are the columns of A linearly independent? Are the columns of B linearly independent?
c) Do the columns of A span \mathbb{R}^{3} ? Do the columns of $C \operatorname{span} \mathbb{R}^{2}$?

Problem 3. Consider the matrix and vector

$$
A=\left[\begin{array}{ccccc}
4 & 7 & 12 & -3 & 6 \\
0 & 3 & 11 & -1 & 7 \\
0 & 0 & 2 & 4 & -9 \\
0 & 0 & 0 & -2 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
3 \\
-1 \\
7 \\
4
\end{array}\right]
$$

a) What is the reduced row echelon form of A ?
b) Is A invertible?
c) Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for \mathbf{x} ? If so, is the solution unique?

Problem 4. Consider the matrices

$$
A=\left[\begin{array}{ll}
3 & 6 \\
1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 3 & 7 \\
0 & 0 & 6 \\
0 & 0 & 14
\end{array}\right], \quad C=\left[\begin{array}{ccc}
4 & 0 & 0 \\
2 & 1 & 0 \\
4 & 3 & 2
\end{array}\right]
$$

a) Is A invertible? If it is, find its inverse.
b) Is B invertible? If it is, find its inverse.
c) Is $B C$ invertible?

Problem 5. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
9 \\
10 \\
11 \\
12
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{c}
13 \\
14 \\
15 \\
16
\end{array}\right], \quad \mathbf{v}_{5}=\left[\begin{array}{c}
17 \\
18 \\
19 \\
20
\end{array}\right] .
$$

a) Is the set $\left\{\mathbf{v}_{1}\right\}$ linearly independent?
b) Is the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ linearly independent?
c) Is the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ linearly independent?
d) Is the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly independent? If not, write a nontrivial solution to the equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{0}$. (Timesaving hint: Look at $\mathbf{v}_{3}-\mathbf{v}_{2}$ and $\mathbf{v}_{2}-\mathbf{v}_{1}$.)
\mathbf{e}) Is the set $\left\{\mathbf{v}_{2}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ linearly independent? (Timesaving hint: Look at $\mathbf{v}_{5}-\mathbf{v}_{4}$ and $\mathbf{v}_{4}-\mathbf{v}_{2}$.)

Problem 6. Consider the discrete dynamical system

$$
\mathbf{x}_{n+1}=A \mathbf{x}_{n}
$$

where each $\mathbf{x}_{n} \in \mathbb{R}^{2}$ and

$$
A=\left[\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right]
$$

a) If we know that $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, what is \mathbf{x}_{2} ?
b) Write a formula for \mathbf{x}_{100} in terms of \mathbf{x}_{0} and A.
c) Is it possible to determine \mathbf{x}_{3} uniquely given \mathbf{x}_{4} ? If so, write a formula for \mathbf{x}_{3} in terms of \mathbf{x}_{4}.

Problem 7. True or False. If a statement is sometimes true and sometimes false, write "false". You do not have to justify your answers. There will be no partial credit.
a) If two matrices A and B are both invertible then $A B$ is also invertible, and $(A B)^{-1}=$ $A^{-1} B^{-1}$.
b) If the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some \mathbf{b}, then it is consistent for every \mathbf{b}.
c) A homogeneous linear system is always consistent.
d) A consistent linear system either has exactly one solution or infinitely many.
e) If a linear system has more variables than equations, then it is consistent.
f) If T is a linear transformation, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent, then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is also linearly dependent.
\mathbf{g}) If T is a linear transformation, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent, then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is also linearly independent.
h) If the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution, then it has infinitely many nontrivial solutions.
i) If the linear transformation $T(\mathbf{x})=A \mathbf{x}$ is not $1-1$, then the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
j) The transformation from \mathbb{R}^{3} to \mathbb{R}^{3} given by $T(\mathbf{x})=-4 \mathbf{x}$ is a linear transformation.
\mathbf{k}) The transformation from \mathbb{R}^{3} to \mathbb{R}^{2} given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+3 \\ 3 x_{2}\end{array}\right]$ is a linear transformation.
l) If a 4×6 matrix (4 rows, 6 columns) has 4 pivots, then its columns span \mathbb{R}^{4}.
m) If a 5×2 matrix (5 rows, 2 columns) has 2 pivots, then its columns are linearly dependent.

