Problem 1.

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

(a) Find the solution set of $A \mathbf{x}=\mathbf{0}$. Give it in parametric form (unless it is empty).
(b) Is the solution set of $A \mathbf{x}=\mathbf{0}$ a subspace of \mathbb{R}^{3} ? If so, what is its dimension?
(c) Consider the vector

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]
$$

Find the solution set of $A \mathbf{x}=\mathbf{b}$. Give it in parametric form (unless it is empty).
(d) Is the solution set of $A \mathbf{x}=\mathbf{b}$ a subspace of \mathbb{R}^{3} ? If so, what is its dimension?

Problem 2.

Suppose V is a vector space with $\operatorname{dim} V=3, W$ is a vector space with $\operatorname{dim} W=7$, and T is a linear transformation from V to W.
(a) Is Ran T a subspace of W ? If so, what are all the possibilities for its dimension?
(b) Is Nul T a subspace of V ? If so, what are all the possibilities for its dimension?

Problem 3.

Consider the three vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
3 \\
-5
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
9 \\
-15
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
7 \\
-10
\end{array}\right]
$$

(a) Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ a basis for \mathbb{R}^{3} ? Why or why not?

Let $S=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(b) Find a basis for S. What is the dimension of S ?
(c) Find an orthogonal basis for S.

Consider the vector

$$
\mathbf{y}=\left[\begin{array}{c}
-10 \\
10 \\
4
\end{array}\right]
$$

(d) Find the orthogonal projection of \mathbf{y} onto S.

Problem 4.

Consider the matrix

$$
A=\left[\begin{array}{ccc}
-5 & -6 & 0 \\
\frac{9}{2} & 7 & 0 \\
0 & 0 & 4
\end{array}\right] .
$$

(a) Find all eigenvalues of A.
(b) For each eigenvalue, describe the corresponding eigenspace.
(c) Is there a matrix P such that $P A P^{-1}=D$ with D diagonal? If so, write P and D.

Problem 5.
Consider the symmetric matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Find an orthonormal basis of \mathbb{R}^{2}, consisting of eigenvectors of A.

Consider the quadratic form

$$
Q(x, y)=x^{2}+6 x y+y^{2} .
$$

(c) Is the point $(x, y)=(0,0)$ a minimum, maximum or saddle point?
(d) Find any values of (x, y) on the unit circle where $Q(x, y)$ is minimized and maximized.

Problem 6.

Consider the dynamical system

$$
A \mathbf{x}_{n}=\mathbf{x}_{n+1}
$$

where A is a 2×2 matrix whose (complex) eigenvalues are $\lambda=2+i$ and $\lambda=2-i$.
(a) Is the origin attracting, repelling, saddle point or none of the above?
(b) Are there any possible starting points \mathbf{x}_{0} for which the \mathbf{x}_{n} all lie on a line through the origin?

Now consider instead

$$
A^{2} \mathbf{x}_{n}=\mathbf{x}_{n+1} .
$$

(c) Now is the origin attracting, repelling, saddle point or none of the above?

Problem 7.

Let \mathcal{F} be the vector space consisting of all real-valued functions $f(t)$ on the real line. Let V be the subspace of \mathcal{F} defined by $V=\operatorname{Span}\{\sin t, \cos t\}$. Let $T: V \rightarrow \mathbb{R}^{3}$ be the linear transformation

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f(\pi) \\
f(2 \pi)
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Ran} T$. What is the dimension of $\operatorname{Ran} T$?
(b) What is the dimension of $\operatorname{Ker} T$?

Problem 8.

Consider the matrix

$$
A=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) What is $\operatorname{det} A$?
(b) What are the eigenvalues of A ?
(c) What is the dimension of the 1-eigenspace of A ?
(d) Is A diagonalizable?

Consider the matrix

$$
B=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(e) Is B diagonalizable? (Hint: no calculations are needed.)

Problem 9.

True or False. If a statement is sometimes true and sometimes false, write "false". You do not have to justify your answers.
(a) If a matrix has orthogonal columns, then it is an orthogonal matrix.
(b) If 3 vectors form an orthogonal set then they are linearly independent.
(c) If $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ and $\mathbf{v}_{1} \cdot \mathbf{v}_{3}=0$ then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal set.
(d) Every subspace of \mathbb{R}^{n} has an orthonormal basis.
(e) If V is a vector space with a subspace W, U is another vector space, and $T: V \rightarrow U$ is a linear transformation, then $\{\mathbf{u}: \mathbf{u}=T(\mathbf{w})$ for some $\mathbf{w} \in W\}$ is a subspace of U.
(f) If the equation $A \mathbf{x}=\mathbf{b}$ admits a solution \mathbf{x}, and A is an $n \times n$ invertible matrix, then the solution is unique.
(g) If V and W are subspaces of \mathbb{R}^{4} then their intersection is also a subspace of \mathbb{R}^{4}.
(h) If $\operatorname{det} A=1$ then the eigenvalues of A are all 1 .
(i) If \mathbf{v} and \mathbf{w} are orthogonal then $\|\mathbf{v}\|+\|\mathbf{w}\|=\|\mathbf{v}+\mathbf{w}\|$.

