Theorem.
Let \(f \) be a real-valued function. Let \(D \subset \mathbb{R} \) be the domain of \(f \), and \(p \in D \). Then,

\[f \text{ is continuous at } p \]

if and only if

for all sequences \((x_n) \subset D \) such that \(x_n \to p \), we have \(f(x_n) \to f(p) \).

Proof.
First, we prove the forward direction: assume that \(f \) is continuous at \(p \), and suppose given some sequence \((x_n) \subset D \), such that \(x_n \to p \). We would like to show that \(f(x_n) \to f(p) \).

Fix some arbitrary \(\epsilon > 0 \). Since \(f \) is continuous at \(p \), there exists a \(\delta > 0 \) such that

\[
(x \in D, |x - p| < \delta) \implies |f(x) - f(p)| < \epsilon.
\]

Also, since \(x_n \to p \), there exists an \(N \in \mathbb{N} \) such that

\[
n \geq N \implies |x_n - p| < \delta.
\]

Combining these two (and the fact that \(x_n \in D \) from above), we have that

\[
n \geq N \implies |f(x_n) - f(p)| < \epsilon.
\]

So \(f(x_n) \to f(p) \).

Next, we prove the backward direction. For this we switch to its contrapositive. So, assume that \(f \) is not continuous at \(p \). We would like to show that there exists some sequence \((x_n) \subset D \), such that \(x_n \to p \), and \(f(x_n) \not\to f(p) \).

Since \(f \) is not continuous at \(p \), there exists some \(\epsilon > 0 \) such that, for all \(\delta > 0 \), there exists an \(x \in D \) with \(|x - p| < \delta \) and \(|f(x) - f(p)| \geq \epsilon \). Fix this \(\epsilon \). Then for any \(n \in \mathbb{N} \), taking \(\delta = 1/n \), it follows that there exists an \(x_n \in D \) with \(|x_n - p| < 1/n \) and \(|f(x_n) - f(p)| \geq \epsilon \).

This defines our sequence \((x_n) \subset D \).

Since \(|x_n - p| < 1/n \), we have \(p - 1/n \leq x_n \leq p + 1/n \); and \(p + 1/n \to p \), \(p - 1/n \to p \), so applying the “Squeeze Theorem” (problem 3.19) gives \(x_n \to p \).

But since \(|f(x_n) - f(p)| \geq \epsilon \) for all \(n \), \(f(x_n) \not\to f(p) \) (problem 3.10).

So we have shown that \((x_n) \) has all the desired properties.